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Microstructure is a feature of crystals with multiple symmetry-related energy-
minimizing states. Continuum models have been developed explaining mi-
crostructure as the mixture of these symmetry-related states on a fine scale
to minimize energy. This article is a review of numerical methods and the
numerical analysis for the computation of crystalline microstructure.
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1. Introduction

Advances in the understanding of material microstructure are playing an im-
portant role in the development of many new technologies that depend on ma-
terial properties such as shape memory, magnetostriction, and ferroelectricity.
Microstructure occurs in many materials as the fine-scale spatial oscillation
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DAALOQ3-92-G-0003, by the Institute for Mathematics and its Applications, and by a
grant from the Minnesota Supercomputer Institute.
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Fig. 1. Photomicrograph of an austenitic-martensitic phase boundary (see Section
3.9) for a single crystal of Cu-14 at.% Al-3.9 at.% Ni from the laboratory of C.
Chu and R. James. The martensitic phase is laminated or ‘twinned’. (Field of

view: 1.25 mm x 0.86 mm.)

between symimnetry-related states. In this article, we survey the recent devel-
opment of numerical methods and their analysis to compute microstructure
in materials. We will be mainly concerned here with the microstructure of
martensitic crystals where lattice structure oscillates between ‘twinned’ states
(see Fig. 1 and Fig. 2).

During the past several years a geometrically nonlinear continuum theory
for the equilibria of martensitic crystals based on elastic energy minimiza-
tion has been developed (Ericksen 1986, 1987a, 19875, Ball and James 1987,
James and Kinderlehrer 1989, Ball and James 1992). The invariance of the
energy density with respect to symmetry-related states implies that the elastic
energy density is non-convex and must have multiple energy wells. For a large
class of boundary conditions, the gradients of energy-minimizing sequences
of deformations must oscillate between the energy wells to allow the energy
to converge to the lowest possible value. Even though the deformation gradi-
ents of such energy-minimizing sequences do not converge pointwise, certain
kinds of averages of the deformation gradients converge for a large class of
boundary conditions. This convergence has been studied intensively using
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Fig. 2. Photomicrograph of a second-order laminate (see Section 3.10) for a single
crystal of Cu-14 at.% Al-3.9 at.% Ni from the laboratory of C. Chu and R. James.
(Field of view: 1.25 mm x 0.86 mm.)

the Young measure (Tartar 1984, Kinderlehrer and Pedregal 1991, Ball and
James 1992) and the H-measure (Tartar 1990, Kohn 1991).

A geometrically linear theory for the equilibria of martensitic crystals was
developed by Eshelby (1961), Khachaturyan (1967, 1983), Khachaturyan and
Shatalov (1969), and Roitburd (1969, 1978). This theory is nonlinear, though,
because the energy density has local minima at multiple stress-free strains.
The relationship between the geometrically linear theory and the geometric-
ally nonlinear theory has been explored by Kohn (1991), Ball and James
(1992), and Bhattacharya (1993). Most of the results for the geometrically
nonlinear theory that we discuss in this article have related counterparts for
the geometrically linear theory.

These theories have presented a major challenge to the development and
analysis of numerical methods, since they have features very unlike those of the
physical theories usually approximated by numerical methods. The presence
of microstructure has motivated the development of numerical methods that
can capture macroscopic information without resolving the microstructure on
the physical length scale (which can vary from nanometres to millimetres).

Although much progress has been made in the analysis of global minima of
models for the energy of martensitic crystals, such erystals typically exhibit
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hysteretic behaviour and are usually observed in local minima or in meta-
stable states (Burkart and Read 1953, Basinski and Christian 1954, Ball,
Chu and James 1994, Ball, Chu and James 1995). Since the analytic study of
these local minima is difficult, the computational approach offers an important
tool for the exploration of meta-stable states. Thus, a further computational
challenge is presented by the multitude of local minima which the numerical
models necessarily inherit from the continuum models (Ball, Holmes, James,
Pego and Swart 1991), as well as the local minima that occur from repres-
enting the same microstructure on the different scales possible for a given
grid.

Early three-dimensional computations and numerical algorithms for a geo-
metrically nonlinear model of microstructure in martensitic crystals have been
given by Collins and Luskin (1989) for the In-20.7 at.% TI alloy, and Silling
(1989) has reported computations for a two-dimensional model exhibiting mi-
crostructure. Later computational results and numerical algorithms for equi-
librium problems are given by Collins, Luskin and Riordan (1993) and Collins
(1993a). Computations and numerical algorithms for geometrically linear
models of martensitic crystals have been given by Wen, Khachaturyan and
Morris Jr. (1981), Wang, Chen and Khachaturyan (1994), Kartha, Castén,
Krumhansl and Sethna (1994) and Kartha, Krumhansl, Sethna and Wickham
(1995).

A theory for the numerical analysis of microstructure was proposed by
Collins, Kinderlehrer and Luskin (1991a) and Collins and Luskin (1991b) and
extended in Chipot (1991), Chipot and Collins (1992), Gremaud (1994) and
Chipot, Collins and Kinderlehrer (1995). This theory has been used to give an
analysis of the convergence of numerical methods for three-dimensional, phys-
ical models of microstructure in ferromagnetic crystals (Luskin and Ma 1992)
and in martensitic crystals with an orthorhombic to monoclinic transforma-
tion (Luskin 19964, Luskin 1996b) and a cubic to tetragonal transformation
(Li and Luskin 1996).

The theory for the numerical analysis of microstructure gives error estim-
ates for the local mixture, rather than the pointwise values, of the deformation
gradients; so the representations of the same microstructure on different scales
are shown to yield almost identical macroscopic properties. These estimates
show that many macroscopic properties converge as the length scale of the
underlying microstructure converges to zero, which gives a justification for
computing microstructure on a length scale that can be orders of magnitude
larger than the physical length scale.

The relaxed energy density for a given deformation gradient F' € R3*3
is given by the infimum of the average energy of deformations defined on
a smooth domain and constrained to be equal to an Fx on the boundary.
Under appropriate conditions, the infimum of the relaxed energy is attained
by deformations that are the limit of energy-minimizing (for the original en-
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ergy) sequences of deformations (Ekeland and Temam 1974, Dacorogna 1989).
Although an explicit formula or practical computational algorithm for the re-
laxed energy density (the quasi-convex envelope) is generally not known for
the non-convex energies used to model martensitic crystals, representations of
the polyconvex and rank-one convex envelopes have been given, which can be
numerically approximated to give lower and upper bounds for the relaxed en-
ergy density (Dacorogna 1989). These representations, especially that given
by Kohn and Strang (1986), have been used in Nicolaides and Walkington
(1993), Roubicek (1994), Carstensen and Plech4c¢ (1995), Roubicek (1996a),
Pedregal (1996), Pedregal (1995) and Kruzik (1995).

The computation of the dynamics of the development and propagation of
microstructure is important for the modelling and control of materials with
microstructure. Swart and Holmes (1992) have studied the ‘viscoelastody-
namics’ of a scalar, two-dimensional model, and Klouéek and Luskin (1994a)
and Klouc¢ek and Luskin (1994b) have computed the viscoelastodynamics of
a three-dimensional model for the In-20.7 at.% TI alloy.

This article focuses on computational methods for continuum theories for
single martensitic crystals. Our bibliography contains references to many
topics that we do not consider in detail in the text, such as homogenization,
polycrystals, surface energy, and dynamics. We refer the reader to Luskin
and Ma (1992, 1993) and Ma (1993) for recent developments in numerical
methods and numerical analysis for the computation of the microstructure in
the magnetization of ferromagnetic crystals.

2. Continuum theory for martensitic crystals

We give here a brief outline of the geometrically nonlinear continuum theory
for martensitic crystals (Ericksen 1986, 1987a, 1987b; Ball and James 1987,
1992). The crystallographic background for the topics treated in this sec-
tion will be given in the forthcoming book by Pitteri and Zanzotto (1996a).
Martensitic crystals have a high-temperature phase known as austenite, and
a low-temperature, less symmetric phase known as martensite. The austen-
itic phase exists in one variant, but the martensitic phase exists in several
symmetry-related variants and can form a microstructure by the fine-scale
mixing of the variants.

2.1. The elastic energy and admissible deformations

We use the austenitic phase at the transformation temperature as the reference
configuration © C R3 of the crystal. We assume that € is either a polyhedron
or a smooth, bounded domain. We denote deformations by functions y(x) :
Q — R3, and we denote the corresponding deformation gradients by F(z) =
Vy(x).

We shall denote the elastic energy per unit volume at temperature 8 and
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deformation gradient F' € R3*3 by ¢(F, ), which shall always be assumed to
be continuous and to satisfy the growth condition

H(F,0) > C1||F||P —Cyp  for all F € R®3, (2.1)

where Cp and C; are positive constants independent of F € R3*3, where we
assume p > 3 to ensure that deformations with finite energy are continuous
(see (2.4) below), and where we are using the matrix norm

3
|F|I? = Z F% for F € R3S,

i,j=1

It is not realistic to consider deformations with arbitrarily large deforma-
tion gradients F'(x) = Vy(z) within the theory of elasticity (we can expect
non-elastic behaviour such as fracture and plasticity to occur at large deform-
ation gradients), so our use of the growth condition (2.1) can be viewed as a
mathematical convenience. Also, we will be concerned only with temperat-
ures in a neighbourhood (0, 07 ) of the transformation temperature 0r, so
we need only assume that the growth condition (2.1) is valid uniformly for
0 e ( 0., oy )

We expect that observed deformations g(z) are local minima of the total
elastic energy

£(j) = /Q 6(Vi(z),8) do (22)

among all deformations satisfying appropriate boundary conditions and hav-
ing finite energy. However, we will see that there generally do not exist
energy-minimizing deformations to (2.2) for the non-convex energy densit-
ies ¢ that we use to model martensitic crystals, and so we must consider
energy-minimizing sequences.

Since p > 3 in the growth condition (2.1), we have that the deformations
with finite energy are uniformly continuous (Adams 1975), so we can denote
the set of deformations of finite energy by

W — {y € C(O: R - /Q¢(Vy(w),9) dz < oo} . (2.3)

We note that
W c WP, R?) c C({;R?), (2.4)

where W1P(; R3) is the Sobolev space of measurable deformations y : Q —
R3 such that (Adams 1975)

[yt + 19y(@)?) dz < oo,

In what follows (and above in the definition of £ and W?), we shall often
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suppress the explicit dependence on temperature where we do not think that
there is a danger of misunderstanding.

To model an unconstrained crystal, we define the admissible set of deform-
ations A to be the set of deformations of finite energy

A=W?,
and we consider energy-minimizing sequences of deformations for the problem

int £(y). (2.5)

For a crystal that is constrained on the entire boundary by the condition
y(z) = yo(z), for all z € 092, (2.6)

for some yo(z) € W%, we consider energy-minimizing sequences of deform-
ations for the problem (2.5), where the set A of admissible deformations
consists of all deformations of finite energy constrained on the boundary by
(2.6), that is,

A:{y€W¢:y(m)=y0(x), forxeaﬂ} .

Our model and analysis can also accommodate more general boundary con-
ditions, such as the inclusion of boundary loads.

Admissible deformations should be orientation-preserving isomorphisms,
that is, det Vy(z) > 0 for all € Q. However, we shall not explicitly impose
this constraint since we have found that computed solutions have always
satisfied this condition.

2.2. Frame indifference and crystal symmetry
The elastic energy density ¢ is required to be frame-indifferent, that is,

¢(RF,0) = ¢(F,0)  for all R € SO(3) and F € R3*3, (2.7)

where SO(3) denotes the set of orthogonal matrices with determinant equal
to 1. We assume that the energy density inherits the symmetry of the more
symmetric high temperature phase of the crystal when the domain of the
energy density is suitably restricted (Ericksen 1980, Pitteri 1984), so

¢(RiFRY 6) = ¢(F,0) forall R, € G, (2.8)
where G = {Rj,..., Ry} is the symmetry group of the austenite.

2.3. Local minima of the energy density

Near the transformation temperature, we will assume that the energy density
@(F,0) has local minima at the deformation gradients that describe the aus-
tenitic and the martensitic phases, and is therefore non-convex. The reference
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configuration has been taken to be the austenitic phase at the transformation
temperature, so the identity deformation gradient I describes the austen-
itic phase, and by the frame indifference of the energy density (2.7), every
R € SO(3) should then be a local minimum of the energy density ¢(F, ). We
note that for simplicity we have neglected the thermal expansion of the aus-
tenite in the above conditions, since the deformations describing the austenitic
phase are taken to be independent of temperature.

We shall assume that the energy density ¢(F, ) for the temperature 6 near
the transformation temperature 1 also has local minima at the set of variants

{RUIRT : Ri€ G} = {Uh,...,Un} (2.9)

which describe the martensitic phase. Here the U; = U;(f) are deformation
gradients for an unstressed crystal in the low-temperature, martensitic phase.
It follows from the symmetry of the energy density (2.8) that

$(U1,0) = -+ = ¢(Upn, 6). (2.10)
Since M (defined in (2.9)) is equal to the number of cosets of the subgroup
H={Rieg:RURT = U}
in G, we have by Lagrange’s Theorem (Herstein 1975) that

_ 19l

L
It follows from (2.10) and the frame indifference of the energy density (2.7)
that ¢(F, 0) has local minima at the energy wells of each variant given by

U, = SO(3)U; = { RU; : R € SO(3)} . (2.11)

M

If we denote the union of the energy wells by
U=U U Ulp,

then it follows from the frame indifference (2.7) of the energy density and
(2.10) that

&(U,8) = (U1,0) = - = p(Upr,0)  for all U € U.

Also, since admissible deformations are required to be orientation-preserving
isomorphisms, we shall always assume that det Uy > 0, so by (2.9) and (2.11)
we have that

detU =detU; >0 foral U e U. (2.12)

2.4. The orthorhombic to monoclinic transformation

We next present two examples of martensitic phase transformations. First,
we describe the symmetry group G and the corresponding martensitic vari-
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ants {R,L'UlR;fF : R; € G} for one of the orthorhombic to monoclinic trans-
formations (Ball and James 1992). The symmetry group of the orthorhombic
(high-temperature) phase is composed of the rotations of 7 radians about an
orthogonal set of axes, so

G={I,-I+21®e;, —[+2e3Rez, — +2e3Re3},

where {ei, €2, e3} is an orthonormal basis of R3. We recall that v @ w €
R3*3 for v, w € R® is the tensor product defined by (v ® w)r = vgwy, or,
equivalently, (v ® w)u = (w - u)v for u € R3.

The variants of the monoclinic (low-temperature) phase can then be given

by
Ui=I~-nea®e1)D and Ups=(I+ne2®e1)D, (2.13)
where 5 > 0, and where D € R3*3 is the positive diagonal matrix
D =die; ® e1 + daea @ ez + dze3 ® e3
for di,d9,d3 > 0. We note that

{RUIRT : Rie G} ={U1, U} .

2.5. The cubic to tetragonal transformation

For the more common cubic (high-temperature) to tetragonal (low-temp-
erature) transformation, the group G is the symmetry group of the cube

g:{Rl,.~-,R24} ) (214)
which is given by the group of matrices
R = (-1)"Wery @ e + (—1)"Perg @ ez + (=1)"Pegz @ e3,

where v : {1, 2, 3} - {0, 1}; 7 : {1, 2, 3} — {1, 2, 3} is a permutation; and
det R; = 1. We also assume as above that {ej, e2, e3} is an orthonormal basis
of R3. The variants of the tetragonal phase can be taken to be

Ur=vl+ (va—vi)e1 Qe, U =1l + (vy — v1)e2 ® ey,
Us=1l+ (rr—r)esQes (2.15)

where 0 < v1, 0 < vg, and v; # vo. For this transformation,

{ RU\RT : Ri€ G} = {Us, Up, Us} .

2.6. Global minima of the energy density

The reference configuration has been chosen so that F' = I is the deform-
ation gradient for the high-temperature phase at the transformation tem-
perature § = Op. The elastic energy density should then predict that the
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high-temperature phase (represented by F' € SO(3)) is a global minimum for
6 > 61 and the low-temperature phase (represented by U € U = Uy U- - -Uldpr)
is a global minimum for § < 6. Thus, the elastic energy density should satisfy
the conditions that, for § > 6,

d(F,0) > ¢(R,0) for all F ¢ SO(3), R € SO(3); (2.16)

for 8 = 87,
&(F,01) > ¢(R,0r) = ¢(U,0r) for all F ¢ SO(3)UU, R € SO(3), U e U;
(2.17)

and for 8 < Op,
d(F,0) > ¢(U,0) forall F¢U,U €U. (2.18)

2.7. The Ericksen-James energy density for the cubic to tetragonal
transformation

The development of a computational mode! for martensitic crystals requires
the construction of an energy density ¢(F,0) that is frame-indifferent (2.7),
has the symmetry group of the crystal (2.8), satisfies the qualitative prop-
erties of the first-order phase transition (2.16)—(2.18), and matches available
experimental data such as the linear elastic moduli of the pure phases and
the dependence of the transformation temperature on stress. The following
such energy density for the cubic to tetragonal transformation was developed
by Ericksen and James (Ericksen 1986, Ericksen 19874, Collins and Luskin

1989):
om0 2 ()" (T2 (R )]
+@ (Z’;ng - 1) (ifg - 1) (?;rcé? - 1) (2.19)
() () ()T

+5(Ch + Oy + Gy + Gy + G + Ch) + f(tr O = 3)%,

where C = FTF is the right Cauchy—Green strain and tr C' is the trace of
C. The energy density (2.19) is frame-indifferent since it is a function of the
right Cauchy—Green strain C. Ericksen has also shown that it has the cubic
symmetry group, and that the coefficients b, c, d, e, and f can be chosen so
that the energy density satisfies the qualitative conditions for the first-order
phase transition with

vi=v1—e vo =1+ 2¢

for 0 < € < 1 (Ericksen 1986).
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Ericksen and James have also determined moduli that fit experimental data
for the In-20.7 at% T1 alloy. These moduli are given by (# in °C and moduli
in gigapascals)

b=038+(1.22 x 1073)(0 — O7), c=—29.23, d=>562.13
e = 3.26, f =15.25,
where the transformation temperature is 7 = 70°C. The size of In-20.7 at%
T1 crystals used in laboratory experiments is typically on the order of several

centimetres in diameter.
An easy calculation establishes that

d(U(€),8) = b(0)e® + ce® + de?,
where U(e) = diag(v/1+ 26,1 —€,v/1 —€). Thus ¢(U(e),6) has a local

minimum in € corresponding to the austenitic phase at €(f) = 0, for all
temperatures satisfying b(f) > 0 (or for § > —240°C). Further, there is a

local minimum at
_ ~3c+ V/9c2 — 32db(0)

€(0) <

corresponding to the martensitic phase for 8 < 6*, where 8* = 108.92°C
satisfies 9¢2 — 32db(6*) = 0. Thus, €(fr) = 0.026.

3. Microstructure

In this section we will describe some examples and properties of microstruc-
tures.

3.1. Interfaces and the rank-one property

We first give a necessary and sufficient condition for the existence of a continu-
ous deformation with a planar interface separating two regions with constant
deformation gradients Fy € R3%3 and F; € R3*3.

Lemmal Let n € R3 |n| = 1, and s € R. There exists a continuous
deformation w(z) € C(R3;R3) such that

[ Fp for all z such that z-n <s,

Vu(z) = { Fy for all x such that z-n > s, (3.1)
if and only if there exists a € R3 such that

Fi=F+a®n. (3.2)

Proof. If w(z) € C(R3;R3) satisfies (3.1), then the equality of the directional
derivatives of w(z) in directions orthogonal to the normal of the interface
implies that

Filv = Fyv for all v € R? such that v-n = 0.
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Thus, we have that (3.2) holds with
a = Fin — Fyn.
Conversely, if (3.2) holds, then the deformation

() = Fyx for all  such that z-n < s,
W\T) =\ Fiz —sa for all  such that z-n > s,

is continuous and satisfies (3.1). O

Lemma 1 can be strengthened to state that if w(x) is a continuous deform-
ation whose gradient takes constant values Fy € R3*3 and Fy € R3%3, with
Fy # Fi in two regions separated by a smooth interface, then the interface
is planar and (3.2) holds for some a, n € R3, |n| = 1, with n a normal to
the planar interface. A more general result for a deformation with a gradient
taking two values can be found in Ball and James (1987). We also note that
the condition |n| = 1 above is not essential since we can always rewrite a ® n
by |nja ® T%l when n # 0.

The above lemma motivates the following definition.

Definition 1 We say that Fy € R3*3 and F; € R3*3 are rank-one connected
if there exist a € R® and n € R3, |n| = 1, such that

Fi=F+a®n. (3.3)

8.2. Laminated microstructure

More generally, if Fy and F} are rank-one connected as in (3.3), then we can
construct a continuous deformation having parallel planar interfaces

Si={zeQ:z-n=s;}

for 81 < -+ < 8, with the same normal n separating the layers in which the
deformation gradient alternates between Fp and Fj by

r-n
w(z) = For + [/ x (8) ds] a, (3.4)
0
where x(s) : R — R is the characteristic function

(s) = 0 if z € (g, 8914+1) for 0 < 21 < m where l € Z,
XSI=11 ifxe (82141, 89142) for 1 <21+ 1 < m where | € Z,

where we take sg = —oo and smy1 = oo. This deformation satisfies the
property that

Fy for all z such that x(z-n) =0,

Vu(z) = Fo+x(@-nja@n= { Fy for all z such that x(z-n) = 1.

Deformations w(x) of the form (3.4) with layer thickness s;+1 — s; small for
i =1,...,m are the simplest examples of microstructure.
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We define ¢pmin(#) to be the lowest attainable energy at the temperature 6,
that is,
Gmin(0) = min_ ¢(F,6). (3.5)

Fer3x3

For 8 < 61 and Fy, F1 € U, we have that
Pmin(0) = d(Fo,0) = ¢(F1,0).
Thus, if § < 6 and Fy, F} € U, then the deformation w(z) defined by (3.4)

attains the minimum energy, since
E(w) = / d(Vw(z),0) dz = Pmin(0)meas Q.
Q

Furthermore, if § > 67 and Fy, Fy € U, then the deformations w(zx) defined
by (3.4) are equilibria, since every F' € U is a local minimum of ¢(F,8) (see

Section 2.3), and hence
E(w+2) — E(w) = /Q (6 (Vu(z) + V2(z),0) - ¢ (Vw(z), 0)] dz > 0

for all z € WH(§; R3) such that ess sup,cq || V()| is sufficiently small.

3.3. Surface energy

The surface energy S associated with all the interfaces S; can be modelled
by

S(w) =« Z area Sj, (3.6)
i=1

where a > 0 is the surface energy density and m is the number of interfaces.
For 0 < 0y and Fy, F; € U, the total energy is the sum of the bulk energy

and the surface energy given by

m
E(w) + S(w) = Pmin(0) meas N + o Z area Sj, (3.7)

i=1
which is minimized when the deformation w does not have any interfaces,
that is, when w(z) = Fyx or w(z) = Fiz. So, how do we explain the presence
of interfaces in martensitic crystals? We will see later in this section that
the constraint of boundary conditions or the constraint of continuity between
austenitic and martensitic regions can make deformations with closely spaced
interfaces energetically advantageous. The presence of interfaces can also be
explained by the meta-stability of such deformations (Abeyaratne, Chu and

James 1994, Ball et al. 1995).

For analytical and computational purposes, the surface energy is usually
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modelled by a strain gradient term such as
S(w) = 62 / VVu(z) - AVVuw(z)dz, (3.8)
Q

where & is the strain gradient coefficient. Here A is a sixth-order tensor such
that the surface energy density VVw(zx) - AVVw(z) is positive definite, is
frame-indifferent, and has the symmetry properties of the crystal (Barsch,
Horovitz and Krumhansl 1987, Horovitz, Barsch and Krumhans] 1991).

Kohn and Miiller (1992a, 19925, 1994) have given an analysis of the rela-
tion between (3.6) and (3.8) for some scalar models, and they have presented
results for the geometry, energy, and length scale of the microstructure for
energy-minimizing deformations. In addition, Miller (1993) has given a de-
tailed study of energy-minimizing deformations for one-dimensional problems
with an energy of the form

/01 [(Z—:(x) - 1)2 (fl—:(a:) + 1)2 + w(z)? + &2 (%i—f(m))Q] dz

for the singular limit given by & — 0. Miller’s work gives rigorous asymptotic
results on the periodicity, length scales, and energy of energy-minimizing
deformations.

We expect under appropriate conditions that there exist smooth energy-
minimizing deformations ws(z) to the total energy

/Q [qb(Vw(a:), 0) + &>°VVuw(z) - AVVw(x)] de,

and that the deformations wg(x) for & — 0 are an energy-minimizing sequence
for the elastic energy

/Q $(Vew(z), §) dz. (3.9)

Now let © be a reference configuration and suppose that the deformation
wl®L(z) : LQ — R3 is an energy-minimizing deformation defined on the
domain L) = {Lz : x € Q}, with L > 0 for the total energy

/ [6(Vu(z), 0) + &V Vu(z) - AVVu(2)] da. (3.10)
LQ
It can then be seen that

W, 1(T) = %w[‘i’L] (Lx) for all z €

is an energy-minimizing deformation on the domain Q with the total energy

3 /Q [¢(Vw(m), 6) + %zVVw(x)-AVVw(x)J dz.
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Thus, we see that the properties of energy-minimizing deformations for the
total energy given by (3.10) for crystals on a domain L with L > & can
be investigated by considering energy-minimizing sequences of deformations
for the elastic energy given by (3.9) on a reference configuration Q. This
approach has been rigorously justified by DeSimone (1993) for the micro-
magnetics problem (with the exchange energy playing the role of the surface
energy).

For those energies that include a surface energy such as (3.7) or (3.8), we
see that the surface energy determines the length scale and the geometry of
the layers of energy-minimizing deformations, but it often does not influence
many of the macroscopic properties of interest (Ball and James 1987, 1992).
Also, the length scale at which the surface energy is significant is usually
orders of magnitude smaller than our numerical grid scale, and the surface
energy is often orders of magnitude smaller than the expected discretization
error. For this reason, we shall usually neglect the surface energy in our
discussion in this article.

3.4. Classification of interfaces

We give in this subsection a complete description for both the orthorhombic
to monoclinic transformation (2.13) and the cubic to tetragonal transforma-
tion (2.15) of all interfaces separating two regions with constant deformation
gradients in either the martensitic or the austenitic phase (Ball and James
1987).

We start by showing that there does not exist a continuous deformation
with a planar interface separating two regions of the austenitic phase (Ball
and James 1987).

Lemma 2 There do not exist Ry, R1 € SO(3) with Ry # Ry, such that Ry

and R; are rank-one connected.
Proof. 1f Ry € SO(3) and R; € SO(3) are rank-one connected, then
Ri=Ro+a®n
for a € R? and n € R3, |n| = 1. Thus,
Ry'Ry =I+Ryla®n.

Hence
Ry'Riv=w

for all v in the two-dimensional subspace {v € R% : n-v = 0}. Since Rj'R; €
SO(3), we obtain R; = Ry, which proves the lemma. O

The following four lemmas (Ball and James 1987) show that for the or-
thorhombic to monoclinic transformation (2.13) and the cubic to tetragonal
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transformation (2.15) each Fy € U; is not rank-one connected to any F} € U;
with Fp # Fi, but that every Fy € U; is rank-one connected to two distinct
FieU;forall j#1i,j€{1,---,M}.

Lemma 3 If Fy € U; for some i € {1,---, M}, then there does not exist
Fy € U; with Fy # F1, such that Fy and F} are rank-one connected.

Proof. If Fy = RoU; € U; and Fy = R U; € U; are rank-one connected
where Ry, R; € SO(3), then

RiU; = RoUi +a®n
for a € R? and n € R3, |n| = 1. So,
Ri=Ry+a®U "n. (3.11)

It then follows from (3.11) and Lemma 2 that R; = Ry which proves the
lemma. OJ

The following lemma will allow us to reduce the problem of determining
the rank-one connections for the orthorhombic to monoclinic transformation
(2.13) and the cubic to tetragonal transformation (2.15) to a two-dimensional
problem.

Lemma 4 Suppose that Uy, Uz € U satisfy the conditions
Ures = U e3 = Uzes = Uj e3 = Deg (3.12)

for U # 0. If there exists R € SO(3), a € R3, and n € R? with |n| = 1, such
that

RU, =U1 +a®n, (3.13)

then a-e3 = n-e3 = 0 and R = R(oe3) is the rotation matrix of angle o
about the axis eg, which satisfies

R(oe3)Usv = Uyv (3.14)

for v € R? satisfyingv-n=1v-e3 =0, v # 0.

Conversely, if (3.14) holds for some v € R? satisfying v-e3 = 0, v # 0, then
(3.13) holds for R = R(ce3), n € R3 satisfying n-es =n-v =0, |n| = 1, and
a = (RU; — Uy)n.

Proof. We suppose that (3.13) holds. It then follows that
RU; =Ui+a®n=(I+a®UTn)U, (3.15)
so, since det Uy = det Uz # 0 by (2.12), we have that
det Uy = det(RUp) = det(I + a® Uy Tn) det Uy = (1+a- Uy Tn) det Ur.

Hence, it follows that
a-UrTn=0. (3.16)
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We have by (3.15) that

RUUT =T +a® U Tn, (3.17)
so we have for
C= (RU2U;1)T (RURUTY) = (Uszl)T (veUi) (3.18)
that
C=(1+U7"n@a) (I+a@U;"n). (3.19)
Now it follows from (3.12) and (3.18) that
Cez = e3 (3.20)
and from (3.19) that
Ces = e3+ (U Tn-e3)a+ [a ez + |al? (U7 Tn - 63)] UrTn. (3.21)

Since @ and Uy T'n are linearly independent by (3.16), it follows from (3.20)
and (3.21) that

Uin-e3=0 and a-e3=0. (3.22)
Next, we have by (3.12) and (3.22) that
n-es=n- (ﬁUl"le3) = 17U1'Tn -e3 =0. (3.23)
We then obtain from (3.12), (3.13), and (3.23) that
VRe3 = RUzes = (U + a®n) ez = Ujes = ves. (3.24)
We have that Re3z = e3 by (3.24), so we can conclude that
R = R(oes),

where R(oe3) is a rotation matrix of angle o about the axis e3. The result
(3.14) now follows by (3.13) for v € R3 satisfyingv-n=1v-e3 =0, v # 0.

Conversely, if (3.14) holds, then it is easy to check that (3.13) holds for
R = R(oe3), n € R3 satisfying n-e3 = n-v = 0 with |[n| = 1, and a =
(RU; — Up)n. O

Lemma 5 We consider the orthorhombic—monoclinic transformation (2.13).
If Fy € U; for i € {1, 2}, then for j # 4, j € {1, 2}, there exist two distinct
Fi € U; such that Fy and F are rank-one connected.

Proof. Without loss of generality we may assume that Fy = Uy, and we show
that there exist two distinct R € SO(3) such that

RU=U1+a®n (3.25)
for some a, n € R, |n| = 1. Since (3.12) holds with # = 1, by Lemma 4 it is
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sufficient to determine all ¢ € R and v € Span {e1, ez}, v # 0, such that
R(oe3)Usv = Uyv. (3.26)
Now there exist 0 € R and v € Span {e1, €2}, v # 0, such that
R(oe3)Uyv = Uyv
if and only if there exists v € Span {e1, e2}, v # 0, such that

|Urv| = |Uav]. (3.27)
For v = v1e1 + v9e2 where v;, v € R, we have that
|Urv| = |Ugv) (3.28)
if and only if
vivg = 0.

The solution to (3.28) given by v; = 0 or v = eg corresponds to the obvious
solution

Uz = Uy + 2ndies @ e
to (3.25) given by n = e; and o = 0. The solution to (3.28) given by va =0
or v = e; corresponds to the solution to (3.25) given by
Uyv-Uv d% — n2d%
|U1'UHU2’U| d%-*—’l]zd%

We note that solutions v and —v to (3.28) give the same solutions to (3.25).
a

n = ey, CcCosg = for — T <o <.

Lemma 6 We consider the cubic to tetragonal transformation (2.15). If
Fy € UY; for some i € {1, 2, 3}, then for any j # ¢, j € {1, 2, 3}, there exist
two distinct Fy € U; such that Fy and F} are rank-one connected.

Proof. Without loss of generality we again assume that Fo = U; and j = 2,
and we show that there exist two distinct R € SO(3) such that

RUs=U1+a®n (3.29)

for some a, n € R3, |n| = 1. Since (3.12) holds with ¥ = 17, by Lemma 4 it
is sufficient to determine all 0 € R and v € Span {ej, e2}, v # 0, such that

R(oe3)Uzv = Uyv. (3.30)
Again, there exist 0 € R and v € Span {e1, ez}, v # 0, such that
R(oe3)Usv = Uyv
if and only if there exists v € Span {e1, e2}, v # 0, such that
|Urv| = |Uav|. (3.31)
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For v = vie1 + voes where vy, v2 € R, we have that
[Uhv| = |Uav| (3.32)
if and only if
v% = v%.

We have for the solution to (3.32) given by v = e; — eg the corresponding
solution to (3.29) given by

1
n=——=(e; + e3)

V2

and

oS0 Uyv - Usv 2v119
C = —
|U1v||U2v| 1/12 + 1/22

where

s .
O<0<§ if vy >,
™ .

—§<0'<0 if v > .

We also have for the solution v = ej +e2 of (3.32) the corresponding solution
to (3.29) given by
1

n= ﬁ(el —e3)
and
oS0 — Uyv - Usv _ 2u119
[Uv||Ugv| — v3 + 12
where

7!' .
0<0’<§ if v >,
s .

—§<0<O if vy > 1.

Thus, the solutions to (3.29) give two distinct families of parallel interfaces
corresponding to

1 1
n=—(e;+e and n= —=(e; —e9).
(e1+ e2) \/§<1 2)

V2

It follows from symmetry that there are four additional distinct families of
parallel interfaces corresponding to

1 1
n= —=(e1 + e3), "2—5(61—63),

V2



210 M. LUSKIN

and

1

E(ez —e3).

1( )
n = —(ey + e3), n =

[

The homogeneous austenitic phase can be separated from the homogeneous
martensitic phase by a planar interface with normal n if and only if there exist
a rotation R € SO(3) and vectors a € R® and n € R3, |n| = 1, such that

RU,=I+a®n

for some ¢ € {1,..., M}, where U; is one of the variants defined by (2.9).
The following theorem gives a necessary and sufficient condition for (3.33) to
have a solution.

Lemma 7 We consider the cubic to tetragonal transformation (2.15). If
vy # 1, then there does not exist a rotation R € SO(3) and vectors a € R?
and n € R3, |n| = 1, such that

RU;=I+a®n (3.33)
for any 7 € {1, 2, 3}. If 14 = 1, then
U =1+ (112 — 1)61‘ X e; (3.34)

for any ¢ € {1, 2, 3}.

Proof. We first assume that 1y # 1 and 9 = 1 and that there exist a rotation
R € SO(3) and vectors a € R® and n € R3, |n| = 1, such that (3.33) holds
for some i € {1, 2, 3}. We have that |RU;v| = |v| if and only if v lies in the

one-dimensional subspace spanned by e;. However, |(I + a ® n)v| = |v| for
all v in the two-dimensional subspace for which v - n = 0, which contradicts
(3.33).

We next assume that v; # 1 and vy # 1. By multiplying (3.33) by its
transpose, we have

U2 = (RU)TRU; = (I +n®a)(I+a®n), (3.35)

since UiT =U; and RT = R~ because R € SO(3). Further, a is nonzero, be-
cause otherwise (3.33) implies that U; € SO(3). Now a X n is an eigenvector of
(I + n®a) (I +a® n) with eigenvalue 1, so we have reached a contradiction,
since 1 is not an eigenvalue of Uf in this case.

The proof of the result (3.34) follows directly from the definition of the U;
given in (2.15). O

Bhattacharya (1992) has shown that martensitic crystals exhibiting the
shape-memory phenomenon that is important for many technological applic-
ations can be expected to have a transformation that is approximately volume

preserving, that is, det U; = det I or v?vs = 1. Hence, we do not expect to
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observe the homogeneous austenitic phase separated from the homogeneous
martensitic phase by a smooth interface in martensitic crystals exhibiting the
shape-memory phenomena. We shall see in Section 3.9 that if

1 1
r1<l<wvy and — + = <2
vy V3

or n<l<iy andl/12+y22<2,

then the homogeneous austenitic phase can be separated by a planar interface
from a martensitic phase that is composed of a fine-scale laminate of two
martensitic variants.

3.5. Boundary constraints and fine-scale laminates

We can construct energy-minimizing deformations w with arbitrarily fine-
scale oscillations from energy-minimizing deformation gradients Fy € U and
Fy € U that are rank-one connected as in (3.3). To construct a laminated mi-
crostructure having deformation gradient Fj for volume fraction 1 — A (where
0 < A < 1) and having deformation gradient Fj for volume fraction A, we
construct the continuous deformation w.(x) with layer thickness v > 0 by

wy(T) = yw <$) , (3.36)

where
-
w(z) = For + [/ x (s) ds} a
0
and where x(s) : R — R is the characteristic function with period 1 defined
by

(s) = 0 forall 0<s<1=)A,
X8)=11 forall 1—-A<s<l1.

Now

zn/y
wsfa) - B@| = fwle/n =P/ =1 [ (o) =N dsa
<M1= Nlaly
(3.37)

where
F, = (1 —)\)Fo+)\F1 =Fy+ da®n.

We also have

Vuw,(z) = Fo+ x (%) a®n, for almost all z € Q,
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SO
V. (z) = F ffjy<z-n<({+1-A)y for some j € Z,
W R O+l -ANy<z-n<(j+1)y forsome j€Z.
(3.38)

The deformations w(x) converge uniformly to Fyz as v — 0 by (3.37), but
the deformation gradients oscillate between Fp in layers of thickness (1 — A)y
and F3 in layers of thickness Av. In the laboratory, we do not observe lam-
inates with arbitrarily small layer thickness «y. Laminates with arbitrarily
small layer thickness exist in our model because we neglect surface energy.
However, even with the inclusion of surface energy in the total energy, the
constraint of boundary conditions makes the formation of layers of finite thick-
ness with a deformation gradient oscillating between Fy and F energetically
advantageous.

The infimum of the energy with respect to deformations constrained by the
boundary condition

y(z) = Fz for all z € 00 (3.39)

for a fixed F € R3*3 has been the subject of much research, since it gives
the minimum energy attainable by a microstructure with average deformation
gradient F. The value of this infimum is called the relazation of ¢ at F' and
is discussed further in Section 7 and in more detail in Ekeland and Temam
(1974) and Dacorogna (1989). For the boundary condition (3.39), we denote
the set of admissible deformations by

Wi ={veW?: v(z)=Fz for z € 92} .
We know from (3.5) that

inf &(z) > Pmin(f)meas()
zEW}‘f

for all F € R3*3. The following theorem shows that the infimum of the total
energy over deformations constrained by the boundary condition

y(z) = Fhxx = [(1 — \)Fo + AFi]z for all z € 99,

where Fy € U and F; € U are rank-one connected as in (3.3) and 0 < 07, is
equal to the lowest energy attainable for deformations that are not constrained
on the boundary. The proof of the following theorem also shows that an
energy-minimizing sequence can be constructed which is equal to the laminate
w~(z) except for a boundary layer whose thickness converges to zero as y — 0.
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Theorem 1 If Fy € U and F} € U are rank-one connected as in (3.3) and
6 < Or, then there exist deformations w, € Wg defined for v > 0 such that
det (Vb (z)) > 0, for almost all z € Q

and

lir%é'(w7) = Pmin(0)meas(§2).

y—
Proof. The deformation 1, () that we construct is equal to wy(x) as defined
in (3.36) in the subset

Q% = {z € Q:dist(z,00) > vy},

where v > 0 is a constant to be determined to ensure that det (Vi (z)) > 0;
W, () is equal to Fyz on 8(2, and it interpolates between w,(x) and Fiz on
a\ Q,ly To construct the interpolation, we define the scalar-valued function

Py(z) : 2 = R by

W (z) = 1 for all z € Q,ly,
T (vy) " Mdist(z, 0Q) for all z € Q\ Q,ly

The function ¥, (x) is easily seen to satisfy the following properties:

0<9Y,y(x) <1 for all x € Q,
Py(z) =1 for all z € Q7
Yy(x) =0 for all x € 091,
|Vipy(z)| < (vy)~? for almost all z € Q. (3.40)

We define the deformation . (z) : @ — R3 by
Wy(z) = Yy(x)wy(z) + (1 —Py(z))Frxx  forall z € Q, (3.41)
so we have for z € ) that
Vi (2) = (wy(z) — FAz) © V() + % () Yoy (2) + (1 = %y () Fi.
It then follows from (3.37), (3.38), and (3.40) that
[y (@) — Fya| = ¥, (@) |y (@) - Fxzl < A1 = Nlaly, z€9,

Vi, (z) = Vwy(z) € { Fo, F1} C U, x € Q,ly,
Vg (z)|| < C, almost all z € Q,
Wy (z) = Pz, x € 09Q, (3.42)

where C > 0 above and in what follows denotes a generic constant that is
independent of ~.
Since ¢ is continuous, it is bounded on bounded sets in R3*3, Thus, it
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follows from (3.5) and (3.42) that for 6 < 67
[ 16V (@),0) ~ buin(0)] d2] = [ [0(Vitn(2),6)  9usn(©)] da
= [ 18(Ti(),0) = Guin®)] o+ | ,[8(70:(0),6) = 6mia(0)] d

o\nL
~ / (6 (Vi (), 8) — Prmin(6)] da
o\l

< Cy (3.43)

since meas (€2 \ Q%) < Cy.
We next show that

det (Vo (z)) > 0, for almost all z € 12, (3.44)

for all v > 0 sufficiently large. Since Fp and F} are rank-one connected as in
(3.3), we have for any £ satisfying 0 < § <1 that

Fr=(1—-8F+¢F=FR+fa@n= (I +éa® FO"Tn)FO. (3.45)
Hence, we have by (3.45) that
det F; = (1 téa- Fo_Tn> det Fy (3.46)
for all 0 < £ < 1. Since Fy, F1 € U, it follows from (2.12) that
det Fy = det F} > 0,
so we have from (3.46) that
a-FyTn=o, (3.47)

and
det Fy = det Fp (3.48)

forall0 <€<1.
Now, by (3.40) and (3.42),

| (wy(z) — Faxz) ® Vs (z)|| < Cv™t for almost all z € Q, (3.49)

and
U (@) V() + (1 — %y (@) Fi = Fega) (3.50)
where
[ (1= (@)A if Vuy(z) = R,
Sa) = { Uy(@) - (1= y(@)A  if Voy(z) = F

So, (3.44) follows from (3.49), (3.48), and (3.50) for v > 0 sufficiently large.
O
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The results of Kohn and Miiller (1992a, 19926 and 1994) for scalar prob-
lems with strain gradient surface energies of the form (3.8) show that we can
expect the energy-minimizing deformations to have layers that branch in the
neighbourhood of the boundary to form infinitesimally small layers, so that
the deformation is compatible with the boundary conditions. However, these
layers are usually several orders of magnitude smaller than our numerical
grid, so the effect of the surface energy is often negligible on macroscopic
properties. Our results in Section 6 show that we can approximate the mac-
roscopic properties of energy-minimizing microstructures for the energy (2.2)
by solutions obtained on a grid of finite mesh size.

There are affine boundary conditions

y(z) = Fzx for all z € 0Q

for which energy minimization requires a construction more complicated than
first-order laminates of the form w.(x). Higher-order laminates than the first-
order laminates w, () are commonly observed (Arlt 1990) and can be con-
structed from layers of compatible laminates (Bhattacharya 1991, Pedregal
1993, Kohn 1991, Bhattacharya 1992). We shall give a construction of a
second-order laminate in Section 3.10. Furthermore, Sverak (1992) has given
an energy density for which the infimum may only be attained by a micro-
structure that is not even one of these higher-order laminates, although it is
not yet known whether such a property holds for the energy densities used to
model martensitic crystals.

3.6. The Young measure and macroscopic densities

The Young measure is a useful device for calculating macroscopic densities
from microscopic densities and for describing the pointwise volume fractions
of the mixture of the gradient of sequences of energy-minimizing deformations
(Tartar 1984, Chipot and Kinderlehrer 1988, Kinderlehrer and Pedregal 1991,
Ball and James 1992). We will give a description of the Young measure
following most closely the viewpoint of Ball (1989).

We suppose that {yx} C W is a sequence of deformations having uniformly
bounded energy £(yx) < C, and enjoying the property that, for any f €
C(R3*3, R) such that f(F) = o(||F||)||F||P as ||F|| — oo, there exists f €
LY(Q, R) so that

Jim [ f(Vya)dz = [ flo)do (3.51)

w
for every measurable set w C €. It can then be shown that there exists a
family p; of probability measures on R3%3, depending measurably on z € Q,
such that f(z) is given by the formula

flz) = ngxaf(F) dpa(F). (3.52)
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The family of probability measures p, is the Young measure associated with
the sequence yi. In the above, we note that it follows from the growth condi-
tion (2.1) that

/ [Vo(z)||P dz < Cl’l/ ¢(Vv(z),0) dz+C Comeas . for all v € W?.
Q Q

If a sequence of deformations g € W? with uniformly bounded energy has
a Young measure and if for some y € W we have that

Vyr(z) — Vy(z) for almost all z € Q,

then we have by (3.51) and the Lebesgue dominated convergence theorem
(Rudin 1987) that

Jim [ (V@) dz = [ f(Vy@) do

—0 Jw w

for all measurable sets w C 2 and for all deformations f € C,(R3*3; R) where
C.(R3*3;R) denotes the set of continuous deformations f(F) € C(R3*3;R)
with compact support. Thus, it follows from the representation (3.52) that

pz = Ovy(z) for almost all x € Q.

It can be shown by a compactness argument that every sequence has at
least one subsequence with the property that, for every f € C(R3*3, R) such
that f(F) = o(||F|))||F||? as || F|| — oo, there exists a f € L}(£2, R) such that
(3.51) holds. Thus, every bounded sequence of deformations in W contains
a subsequence with a Young measure.

The thermodynamic properties of materials, such as energy density and
stress, depend nonlinearly on the deformation gradient and can be described
by densities f(F) € C(R3*3;R) (the dependence of f on temperature is sup-
pressed in this paragraph). We can identify f(Vyg(z)) with a microscopic
density and f (z) with the corresponding macroscopic density. We observe
that the microscopic density f(Vyx(z)) can be oscillatory, while the corres-
ponding macroscopic density f(z) is smooth. For example, we have for the
energy-minimizing sequence ., (z) defined by (3.41) that the macroscopic
density

f(x) = (1= N f(F) + M (F1)

is constant for every f € C(R3*3, R) such that f(F) = o(||F|)||F||P as | F|| —
oo even though f(Va,, (z)) is oscillatory.
For any deformationy € W%, z € 2, and R > 0, we can define a probability
measure on the Borel sets T C R3*3 by
meas { & € Bg(z) : Vy(z) € T}

pa,r,vy(Y) = mons B(a) (3.53)
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where
Br(z) ={ze€Q:|2—z| <R} .

The probability measure pg gwvy(Y) gives the volume fraction for which
Vy(Z) € T, where & € Br(x). We can easily check that

Jpra FPV el F) = i [ F(Vu@) a2 (354

meas Br(x)
for f(F) € C.(R33;R), so
1
. Ovy(s) AT
meas Bgr(x) /BR(r) vy(z) 4

If y; is a bounded sequence of deformations in W% with Young measure
[z, so that (3.51) holds for every f(F) € C.(R3*3;R) for f given by (3.52);
then it follows from (3.54) that

lim f(F) dﬂz,R,Vyk (F) =

k—00 R3x3

meas Br(z) ! [ " Joows FE Aua(F)dz = [, F(F) dyae.n(F)
(3.55)

Hz,RVy =

where
1

= — 7 dZ. 3.56
/‘L(I),R meas BR(.’E) /BR(;I;) :u‘ ( )

The result (3.55) can be restated as

*
Hz,RVy, — Mz,R as n — o0,

where the limit is understood to be in the sense of measures (weak-* con-
vergence). It further follows from (3.56) and the Lebesgue differentiation
theorem (Ball 1989) that

Hz, R N e as R — 0, for almost all x € Q.

We can thus characterize the Young measure by the result that

lim lim = (.
Avb ko Hz,R,Vy; Mz

3.7. Computation of the Young measure for a first-order laminate

We next compute the Young measure of the sequence of first-order laminates
constructed in Section 3.5. For the energy-minimizing sequence of first-order
laminates ., defined by (3.41), we have that if T C R3*3 is an open set with
smooth boundary, such that

FogY, F¢T,;
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then we have by the above construction that
. y
Ha, RV, (T) S ming 2, 1p.

(In fact, if Br(z) C Q,ly, then we have that u, g vy, (T) = 0.) Also, if
Y € R3*3 is an open set with smooth boundary, such that

FeT, FeéT,
then
|tz .50, (1) = (1 = )| < min {% 1};
and if T C R3*3 is an open set with smooth boundary such that
Fl € Ta FO ¢ Ta

then we have that

M, RV, () — )\’ < min {-;5, 1} :

Thus, we can conclude that for any open set T C R3*3 with smooth boundary
T ¢ R3%3, we have that

o R, (X) = [(1 = N)r, (T) + A6p, (T)]| < min {% 1} (3.57)

where §p(T) is the Dirac measure of unit mass at F € R3*3.
It follows from (3.57) that we have for any sequence v — 0 that

Kz, R = 71’§Ln0 Kz, R Vi, = (1 - )‘)61’0 + )‘6F1'

Hence, we have that the Young measure for the energy-minimizing sequence
W, (z) defined by (3.41) satisfies

Pz = }12i£n>0'ux'R =(1—-A)bg, + ASF,.

We note that in this special case the Young measure g, is independent of
x € (2, although in general the Young measure depends on x € €.

3.8. The failure of the direct method of the calculus of variations to give an
energy-minimizing deformation

The direct method of the calculus of variations is widely used to construct
energy-minimizers to variational problems (2.5) by taking the limit of energy-
minimizing sequences of deformations (Dacorogna 1989). On the other hand,
if (1 — A)Fp+ AF1 ¢ U, then we cannot use this technique to construct an
energy-minimizing deformation for our models of martensitic crystals, since
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we have by (3.43) and (2.18) that

‘lyiirb A ¢ (Vi (x)) do = @minmeas () < ¢((1 — A\)Fy + AF})meas ()

= [ ¢ (V(Fya)) dz = [ $(V ( Jing wﬂ,(x)) da.

This result, together with the fact that Vi, converges weakly to F), shows
that the functional £(y) is not weakly lower semi-continuous (Dacorogna
1989).

The following lemmas show that (1 — A\)Fy+ AF1 ¢ U for 0 < A < 1 in
the orthorhombic to monoclinic case (2.13) and the cubic to tetragonal case
(2.15).

Lemma 8 If Fy € U and Fy € U with Fy # F} are rank-one connected and
{RU\RT : Ri € G} = {th, Un},
then
(1-NFo+AF¢U
for0 <A < 1.

Proof. We prove the result by contradiction, so we assume that Fy € U and
Fy € Y are rank-one connected and that

1-NFR+AR el (3.58)
for some 0 < A < 1. It follows by Lemma 3 that we may assume that
Fy=RoU; and F) = RiUs (3.59)
for Ry, Ry € SO(3) and that we may assume by (3.58) that
(1=NF+ A =QU; (3.60)

for Q € SO(3). Since Fy € U and F} € U are rank-one connected, we have by
(3.3) that there exist a € R3 and n € R3, |n| = 1, such that

(1 —/\)F0+/\F1 = F0+/\a®n. (3.61)
It follows from (3.59)-(3.61) that
QU1 = RoU; + Aa ®@ n, (3.62)

so it follows from Lemma 3 that ) = Ry. Since 0 < A < 1, it follows from
(3.62) that @ = 0 and Fy = F}, which is a contradiction with the hypothesis
of the lemma. O

Lemma 9 For the cubic to tetragonal transformation (2.15), if Fy € U and
Fy € U are rank-one connected, then

(1-NEFo+\F U



220 M. LUSKIN

for0 < A< 1.

Proof. If Fy € U and F; € U are rank-one connected, then it follows from
Lemma 3 that we may assume without loss of generality that

Fi=RU;, Fy=Un,
for R € SO(3), and by Lemma 6 that
RU; =U14+a®n (3.63)
where

n= % (e1+e) or n= —\}—5 (1 — e3). (3.64)

We suppose that (1 — A\)Fp + AF} € U. It then follows from the proof of
Lemma 8 that

(1 — /\)Fo + AF1 € Uy Uls,

so we conclude that

(I =XNFy+ AF1 =QUs (3.65)
for @ € SO(3). We next obtain from (3.63) and (3.65) that
Ur+Xa®n=QUs. (3.66)

We have thus reached a contradiction with (3.64) since Lemma 6 implies the
relation

1
n=—(e; te3)

V2

for any solution to (3.66). O

The following result shows that for the orthorhombic to monoclinic case
(2.13) and for the cubic to tetragonal case (2.15) there does not exist an
energy-minimizing deformation (Ball and James 1992).

Theorem 2 For the orthorhombic to monoclinic case (2.13) and for the
cubic to tetragonal case (2.15) there does not exist a deformation y(z) € ng
such that

E(y) = inf &(2). (3.67)

zEW;’A

Proof. We give a proof that covers both the orthorhombic to monoclinic case
(2.13) and the cubic to tetragonal case (2.15). We assume that (3.67) holds,
so by Theorem 1 (which holds for both the orthorhombic to monoclinic case
(2.13) and the cubic to tetragonal case (2.15)) and (3.67) we have that

Ely) = /Q $(Vy,0) AT = i (6)meas Q. (3.68)
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Since (3.67) holds, we can conclude from Theorem 7 in Section 6 (which also
holds for both the orthorhombic to monoclinic case (2.13) and the cubic to
tetragonal case (2.15)) that for all z € 2 and R > 0 we have that

meas {Z € Bgr(z) : Vy(z) = Fy} = (1 — A\) meas Bgr(z),

meas { Z € Br(z) : Vy(x) = Fi} = Ameas Bg(z). (3.69)
It then follows from (3.69) that
1 / L
_ Vy(Z)dz = (1 — A\)Fp + AFy = F). 3.70
meas BR(.’E) Ba(z) y( ) ( ) 0 1 A ( )

Now y is an element of W¢, so the Lebesgue differentiation theorem (Rudin
1987) implies that

1

Rl_rﬂ) m /BR(Z) Vy(x) dz = Vy(:z:), (371)

for almost all x € Q. Hence, we can conclude from (3.70), (3.71), and (3.68)
that

¢<(1 - )‘)FO + )\FI; 0) = ¢min(9)7
which is a contradiction, since (1 — A)Fp + AF1 € U by Lemma 8. O

3.9. The austenitic—-martensitic interface

Microstructure is observed in phase transformations between the austenitic
and the martensitic phases (see Fig. 1). A phase boundary is observed to
separate a homogeneous austenitic region from a microstructured martens-
itic region (Basinski and Christian 1954, Burkart and Read 1953). Ball and
James (1987) have shown that this phenomenon can be explained by the geo-
metrically nonlinear continuum theory and Chu and James (1995) have used
this theory to explain the austenitic-martensitic phase boundary presented
in Fig. 1. The kinematic condition that the martensitic phase be compatible
with the austenitic phase imposes a boundary condition similar to that of
(3.39).

For the cubic to tetragonal case (2.15), Ball and James (1987) have shown
that if

m<l<wand & +L <2
“ V3
or vy < 1<wv and v +1v2 <2,

then the continuum theory predicts that there are fine-scale mixtures of any
two variants of the martensite that can be separated from a homogeneous
austenitic phase by a planar interface. For example, we can construct the

mixture wy, using Fy = Uy and F; = Rl where Kl and U are as defined
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in (3.29). By (3.37), wy — F)z uniformly as v — 0. It turns out that for the

volume fraction 0 < A\* < 1/2 given by
., 1 _ 1/2
3 =3 [1- (203 - 002 - D6t +h)0d - b4 1) ]

there exists a continuous deformation with deformation Fy+z on one side of a
planar interface with normal m, and the homogeneous austenitic deformation
Qx, where @ € SO(3), on the opposite side. Here we have used the fact that
there is a ) € SO(3) and corresponding b, m € R3, with |m| = 1, such that

Fy=(1-=X)U1+ ARUz=Q(I+b®m) (3.72)
where in the orthonormal basis {e, e2, e3}

b=(1+x"+72) (=CIx +7), {(x = 1), B),

m=(1+x"+7)7H(=(x+7), (x-7), 1),
with

x= 5[ +of - 20 -7,
=4[ - v} -,
¢=(1-v))(1+w)Y
B=wv(r? —1)(1+uvp)~ L

All of the remaining austenitic-martensitic interfaces can be obtained from
(3.72) by symmetry considerations, and we obtain that there are 24 distinct
ways a parallel, planar interface can separate the homogeneous austenitic
phase from a microstructured martensitic phase.

We say (3.72) represents an austenitic-martensitic interface because Ball
and James (1987) have constructed an energy-minimizing sequence u, of
continuous deformations such that

/ $(Vauy (2), 67) Az — brmin (67) meas Q (3.73)
Q
and uy(z) — u(z) uniformly as v — 0, where

_ [ Qx forxz-m<O,
u(m)_{ Fy.x forxz-m>0.

We note that
Pmin(07) = H(Q,01) = ¢(RU2,0r1) = ¢(U1, 07).

We can construct u,(z) by

) = Qz for z - m <0,
Uy (@) = { Yy()wy(z) + (1 — Yy(x))Frex for z-m >0,
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where w,(z) is the first-order laminate defined by (3.36), and where

z.m fo<z-m<H,
wv(ac):{7 v

1 itz -m>~.

It is easy to check that u.(z) satisfies the scaling u,(z) = yui(y~lz) for

4 > 0 and z € R3. We also note that we can ensure that det Vu,(z) > 0
almost everywhere by replacing ¥ (z) by %, (v1z) in the definition of u(z)
if the constant v > 0 is sufficiently large (cf. Theorem 1).

Then u,(x) satisfies

Q ifz-m<o,
Uy fz-m>~vyandjy<z-n<(F+1-X)y
Vu,(z) = for some j € Z,
RU; fz-m>~vand (j+1-X)y<z-n<(f+1)y
for some j € Z ,

and

([Vu,y(z)|| < C for almost all z € 2,
luy(z) — u(z)| < C, T €,
uy(z) € C(R%R3).

The estimate (3.73) now follows by the argument (3.43).

The microstructure represented by the deformations u,(zx) for v — 0 is
austenite for £ - m < 0, and is finely twinned martensite for £ - m > 0 with
volume fraction 1 — A* of the deformation gradient U; and volume fraction A*
of the deformation gradient RUz. The plane of the interface satisfies £-m = 0.
It is easily checked that any sequence of deformations ., () with v, — 0
has the Young measure

_ [ ¢g ifz-m <0,
Ha = (1 =Xy, + A6py, ifz-m>0.

Note that u(z) is not an energy-minimizing deformation, since by Lemma 9
&((1 = X)Uy + A*RU,, 61) > ¢(Uy, 07) = ¢(RU2, 67).

The austenitic—martensitic phase transformation has been the subject of
many numerical studies (Collins and Luskin 1989, Kloudek and Luskin 1994a,
Klou¢ek and Luskin 1994b) since it is one of the primary mechanisms for
the creation of microstructure. These numerical studies have been three-
dimensional since the following lemma does not seem to allow for an adequate
two-dimensional model. Two-dimensional models (Collins et al. 1993) usually
represent the martensitic variants by SO(2)U; where the eigenvalues %, 72 of
UTU; satisfy 0 < 02 < 1 and #2 > 1, so the following lemma shows that these
variants have a rank-one connection to the matrices SO(2), which represent
the austenitic phase.
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Lemma 10 If U € R?*? and the eigenvalues 72, U2 of UTU satisfy 0 <
72 <1 and 72 > 1, then there exist a rotation R € SO(2) and vectors a € R?
and n € R?, |n| = 1, such that

RU=1+a®n. (3.74)

Proof. Since UTU € R?**? has eigenvalues 0%, 72 such that 0 < #2 <1 and
72 > 1, there exists a v € R?, v # 0, such that

|Uv| = |v].
So, there exists R € SO(2) such that
RUv =w.

Hence, for n € R? satisfying n-v = 0 and |n| = 1, we have that (3.74) holds
witha = RUn - n. O

3.10. Higher-order laminates

Higher-order laminates of layers within layers are common in martensitic
materials. For example, the photomicrograph in Fig. 2 shows a second-order
laminate that has been explained by Chu and James (1995) using the geomet-
rically nonlinear continuum theory. More general treatments of higher-order
laminates can be found in Kohn and Strang (1986), Kohn (1991) and Pedregal
(1993).

Collins (1993a) has reported computational results for affine boundary con-
ditions that have a second-order laminate as an optimal microstructure, but
do not have a first-order laminate as an optimal laminate. He reported that
his algorithm computed a first-order laminate until the mesh was sufficiently
fine. He explained this by an argument that the energy associated with the
lack of compatibility of the first-order laminate with the boundary conditions
is less than the additional energy associated with the additional interfaces
needed to represent the second-order laminate until the mesh is sufficiently
fine.

We will construct a second-order laminate by layering two first-order lam-
inates. To construct the first-order laminates, we assume that Fyg, Fp1 € U
and Fig, F11 € U are pairs of rank-one connected matrices, that is, we assume
that there exist ag, no € R3, |ng| = 1, and aj, n1 € R3, |ny| = 1, such that

Fo1 = Fyo + ap ® nyg,
Fii=Fio+a1@ni.

We can construct first-order laminates with layer thickness v1 > 0 and a
mixture of Fjy with volume fraction 1 — A; and Fj;; with volume fraction A,
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following (3.36) by

w,[ﬁ (z) =yl (%) for all z € R3

where

w[i](x) = Fyoz + [/ ' Xi (8) ds} a; for all z € R®
0

for i = 0, 1 and where x;(s) : R — R is the characteristic function with period
1 defined by

(s) = 0 forall 0<s<1— Ay
Xil9 /=11 forall 1-X)<s<l.

We recall that by (3.37) we have that

i <£>_F. _(ﬁ)‘<>\i 1= M\)las 3.75
w " (29 M = ( )Ia‘ 171 ( )

lwil(z) — Fiy 2| = m

for all z € R® where
Fin, = (1 = X)) Fyo + M Fi1 = Fip + Mia; @ n;

for ¢ =0, 1.

We can construct a second-order laminate from the first-order laminates
wlﬁ (x) if there exist 0 < Ag, A; < 1 such that Fpy, € R3*3 and F1y, € R3x3
are rank-one connected, that is, there exist a, n € R3, |n| = 1, such that

Fiy = FO)\O ta®n. (3‘76)

If (3.76) holds, then for 2y; < min {1— A, A} we can construct a second-order
Jaminate for any 0 < A < 1 by the periodic extension to R? of the continuous
deformation

wey (z) = Ym (w)w[ﬁ](w) + (1 =y, (2)Fopgr for0<z-n<1—A,
" Yoy, (I)w’[yﬁ](m) + (1 =9y (2)Fiyez forl—A<z-n<l,

where wlﬂ (x) is the first-order laminate defined by (3.75), and where

mlrn if 0<z-n<m,

1 f n<z-n<l—A—m,
Yonl@) = { Mz o= (L=X)| if 20— (1= M) <,

1 if 1-A+ym<z-n<l-—m,

(71) Yz -n—1| fl-m<z-n<l

We can scale the second-order laminate w., (z) by 72 > 0 to obtain the
second-order laminate w.,~,(z) defined by

Wryiy, (37) = YW~y (%) for all z € R5.
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As 41 — 0, the second-order laminate w.,~, () converges to a mixture with

(0]

layer thickness 72 of the first-order laminate w4, (z) with volume fraction 1—A

1]

and of the first-order laminate w5, (z) with volume fraction A. The analysis
in Section 3.5 can then be used to prove that

|31 (2) — Fae| < max { \s(1 = An)larl, o1 = Ao)lazl} 2
for all z € R® where
Fy= (1= X Fox + AF1y,
We can check that
|V, ()| £ C for almost all z € R, (3.77)
and that
Vs () € { Foo, Fo1, Fio, Fii} CU  forallz e R3\Q,, (3.78)

where

szU{meR3:yx~n—j72]§7172 or lx-n—(j+1—)\)72|§7172}.
JEZ

Since © C R? is a bounded domain,

meas (2N §,,) < Cyi, (3.79)

because 2N 072 is the union of O(vyy 1) non-empty planar layers of thickness
Y172. (Note that only O(v; ') of the sets in the definition of €2,, have a non-
empty intersection with Q.) We thus have from (3.77)-(3.79) that for § < 07

/ﬂ $(Viwyy oy (), 0) da

= fQ\Q72 ¢(Vwy, , (x), 0)dz + anQ.,2 A (Vwy,,(),0) dz
< Pmin(#) meas Q + Cyy.

It can also be shown that for any pair of sequences such that vy — 0 and
Yor, — 0 as k — oo we have that the sequence of deformations w.,,~,, (z) has
the Young measure

(1= A)(1 = A0)8ry + (1 — AAobry + M1 = A)bFrg + AM16F, -

Higher-order laminates than second-order can be constructed by iterating
the above construction.
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4. Finite element methods

We wish to compute an approximation to the microstructure defined by
energy-minimizing sequences of deformations to the problem

inf /Q 6 (Vy(z),0) dz, (4.1)

yeEA

where A denotes a set of admissible deformations. The most accurate fi-
nite element method depends on the scale of the microstructure relative to
the scale of the mesh and whether it is possible to align the mesh with the
microstructure.

4.1. Conforming finite elements

The most commonly used finite element spaces in solid mechanics are con-
forming spaces that approximate the admissible set of deformations .4 by a
finite-dimensional subset A;, C A of continuous deformations which are piece-
wise polynomials with respect to a finite element mesh. We can compute
approximations to energy-minimizing sequences of deformations for problem
(4.1) by computing energy-minimizing deformations of the problem

min /Q é (Vyn(z),0) dz. (4.2)

YnE€EAR

We note that, since Ay, is finite-dimensional and the energy
Ewn) = [ ¢(Vun(),0) da

is continuous, the infimum of the energy £(yp,) is attained for at least one finite
element deformation y, € A, since it follows from the growth property (2.1)
that ¢(F,6) — oo as || F'|| — o0o. The lack of attainment of the infimum for the
continuous problem (4.1) is the result of the development of arbitrarily fine
oscillations by the gradient of energy-minimizing sequences of deformations.
The restriction of the admissible deformations to a finite element space limits
the possible fineness of the oscillations to the scale of the mesh; therefore, the
infimum of the energy is attained among deformations which are constrained
to lie in the finite element space.

Since deformations with microstructure are typically approximately piece-
wise linear, the use of piecewise linear or piecewise trilinear elements is a
good choice of finite element space for the approximation of microstructure.
Although these spaces of continuous finite elements effectively approximate
microstructure with layers that are parallel to the planes across which the fi-
nite element deformation gradients can be discontinuous, they have difficulty
approximating microstructure on the scale of the mesh when the layers are
not oriented with respect to the mesh. Computational experiments with the
continuous, piecewise linear element for a two-dimensional model have shown
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that numerical solutions for microstructure given by conforming spaces have
a layer thickness that depends on the orientation of the microstructure with
respect to the mesh; see Fig. 3 (below) and Collins (1994).

However, we proved in Section 3 that the number of families of parallel
planes (the ‘twin planes’) across which the deformation gradients of energy-
minimizing deformations can be discontinuous is finite, so it is possible for
many problems to orient the mesh to the possible twin planes. (By Lemma 5
there are two families of twin planes for the orthorhombic to monoclinic trans-
formation (2.13) and by Lemma 6 there are six families of twin planes for the
cubic to tetragonal transformation (2.15).)

Luskin (19964, 1996b) has given the use of conforming methods a theoretical
validation by giving error estimates for the convergence of the conforming
finite element approximation of a laminated microstructure for the rotationally
invariant, double well problem (U = U; UlU), and Li and Luskin (1996) have
given error estimates for the finite element approximation of a laminated
microstructure for the cubic to tetragonal transformation (2.15). We will give
error estimates for this convergence in Section 6.

4.2. Optimization and local minima

It would be most correct to pose the problem of interest as the computa-
tion of local minima of the non-convex energy £(y) = [, ¢ (Vy(z),8) dz
which represent physically observable equilibrium states. The continuous
problem (4.1) can be expected to have multiple local minima (Ball et al.
1991, Truskinovsky and Zanzotto 1995, Truskinovsky and Zanzotto 1996),
only some of which represent states that can be observed in the laboratory.
However, the restriction of our computational interest to global minima is
not appropriate, since martensitic crystals typically exhibit hysteresis and
meta-stability (Abeyaratne et al. 1994, Ball et al. 1995).

In addition to the local minima which the finite-dimensional problem (4.2)
inherits from the continuous problem, there are also local minima created
by the numerical discretization, which are the representation of the same
microstructure on different length scales and which give the same macroscopic
properties.

Gradient iterative methods, which reduce the energy at each iteration, can
be used to compute the local minimum corresponding to the energy well of
the initial state. Conjugate gradient and other accelerations can be used to
develop more efficient iterative methods (Collins and Luskin 1989, Collins
1993a, Collins et al. 1993). Since the iterates of gradient methods remain in
the energy well of the initial state, the addition of random perturbations to an
initial state can be used to explore new local minima (Collins 19934, Collins
et al. 1993).
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The addition of random perturbations to the initial states for gradient meth-
ods suggests the use of more systematic Monte Carlo techniques. Luskin and
Ma (1993) used a variant of the simulated annealing algorithm to compute
microstructures of fine domains in ferromagnetic crystals. They constructed
a discrete set of magnetizations that were close to the set of local minima
and then utilized a gradient method to compute the optimal solution within
the energy well they had computed with the simulated annealing. The key
to the generalization of this algorithm to the case of martensitic crystals is
the construction of a discrete set of deformations that represent the energy
wells of the martensitic crystal. Kartha et al. (1994) have used a Monte Carlo
method to investigate the properties of a two-dimensional model of martens-
ite, and Gremaud (1995) has developed a Monte Carlo method to compute
global minima of two-dimensional variational problems with local minima.

To ensure that one computes physically observed states in a quasi-static or
dynamical process, one should start with a physically observed state and then
compute the change in the state as environmental conditions such as boundary
conditions or temperature are varied. For quasi-static processes, continuation
methods can be used. For example, Kinderlehrer and Ma (1994 a, 1994b) have
used a continuation method to compute hysteresis in the response of a fer-
romagnetic crystal to changes in the applied magnetic field. The techniques
reported in Klouéek and Luskin (1994 a, 1994b) for the computation of the dy-
namics of martensitic crystals offer another possibility for exploring physically
observed local minima and hysteretic phenomena by computing the physical
dynamics of the response of the crystal to changes in its environment.

4.8. Rotation of the coordinate system

We discussed in Section 4.1 that it can be advantageous to orient the mesh
with respect to the planes across which the gradients of energy-minimizing
deformations are allowed to be discontinuous. This can often be achieved by
rotating the coordinate system describing the reference domain with the mesh
fixed in the coordinate system. It is also convenient to rotate the coordinate
system with the mesh fixed in the coordinate system to test the effect of the
orientation of the finite element mesh with respect to the microstructure.

If we rotate the coordinate system of the reference domain by the rotation
RT where R € SO(3), then the energy density for the crystal in the rotated
coordinate system is given by

B(F,0) = ¢(FR,0).

For the transformed energy density ¢(F,#), it follows from (2.18) that for
6 < 01 we have that @min(0) = Pmin(#) and that

W(F, 0) = pmin(0) if and only if F € SO3)U;U---USO3)Upy
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where
U; = RU;RT fori=1,...,M.
We also note that we have that
QU;=Uj+a®n ifandonlyif QU; =U;+a®n
for Q € SO(3), a € R, and n € R3, where
Q= RQRT, a= Ra, 7= Rn.

Hence, it follows that n = Rn is the normal to a plane across which the
gradient of an energy-minimizing deformation for the energy density (;AS(F ,0)
can be discontinuous if and only if n is the normal to a plane across which the
gradient of an energy-minimizing deformation for the energy density ¢(F,0)
can be discontinuous.

4.4. Visualization techniques

The development of techniques to visualize the results of the computation
of microstructure has been important to the study of microstructure. It is
possible to visualize the deformation by displaying the transformation of the
finite element mesh (Collins and Luskin 1989). However, it is generally easier
to study microstructure by displaying the deformation gradient.

Several techniques have been developed to visualize the deformation gradi-
ent. Collins and Luskin (1989) developed the technique of colouring elements
according to the closest energy well to the deformation gradient. They as-
signed the martensitic variant U; to a given element K with right Cauchy—
Green strain C(z) = (Vy(z))T Vy(z) if and only if

IC - Cilk = min{IC-— Cllk,...,IC— Cumlk, [C—IIK,T},

where C; = UTU;, where 7 > 0 is a user-supplied sensitivity, and where the
matrix norm |C|g is defined by

’C|K=[ ! /Ky|0(x)||2dm]l/2.

meas K

They assigned the austenitic phase I to the element K if and only if
IC_‘I’K = min{lc—Cl‘K,---,IC—CMIK,’C_IIK,T}-

Finally, they assigned the ‘unidentified phase’ to the element K if it is not
assigned to the austenitic or martensitic phases by the above formulae. The
different variants of martensite and austenite are then represented by distinct
colours or shades of grey. Collins and Luskin (1989) visualized the gradients
of three-dimensional deformations by displaying the gradients on a series of
parallel cross-sections.

We know from Ball and James (1992), Luskin (1996a) and Li and Luskin
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(1996) or Theorem 7 that the microstructure which minimizes the energy
among deformations constrained on the boundary by the condition

y(x) =[(1 = AN Fo + AF1]x for all z € 02

is a mixture only of the deformation gradients Fyy and F3 for the orthorhombic
to monoclinic transformation (2.13) and for the cubic to tetragonal transform-
ation (2.15) when Fy and F) are rank-one connected, Fy, F1 € U, and 6 < 6.
Thus, for this problem Collins, Luskin and Riordan (199154) and Collins et
al. (1993) displayed the interpolant of the function

_ |FTF — F{ Fylk
~ |FTF — F{ Fo|k + |FTF — F{ Fil
defined at the centre of gravity of the elements K to display the proximity
of the deformation gradient to the energy wells corresponding to Fy (where
¥ = 0) and to F; (where 1 = 1). They represented the function ¢ by a map
of (0,1) into colour space or into a grey scale. Other useful variants of the
function 9 are given by

. FTF — F{ Fy|?

V(F)k = = IT 2 OTIK T 2.

Y(F)k

(4.3)

which increases the range of deformations that are represented to be nearly
in the energy wells of Fy and F}, and

. |F — Folx
F)k = ,
V(F)x |F-—F0lK+|F—F1|K

which measures the proximity of the deformation gradient to Fy and F) rather
than to their respective energy wells.

The use of isosurfaces of the energy density and surface energy density
was developed and used in Kloucek and Luskin (1994q, 19945) to identify the
austenitic—martensitic interface.

(4.4)

4.5. Numerical experiments for the continuous, piecewise linear
approzimation of a two-dimensional model

We can investigate the computation of a simple laminated microstructure by a
two-dimensional model (Collins and Luskin 1990, Collins et al. 19915, Collins
19934, Collins et al. 1993, Collins 1994). For the two-dimensional model,
we have that the reference configuration 2 C R?, the deformation y(z) :
R%? — ), and the energy density ¢(F) : R®*2 — R (where we suppress the
dependence of the energy density on temperature). We present in Figs 3
and 4 the results of two-dimensional computations by C. Collins using the
continuous, piecewise linear finite element for the problem that will next be

described.
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The three-dimensional orthorhombic to monoclinic problem (2.13) can be
modelled in two dimensions by the energy density

O(F) = K1 (011 -1+ 772))2 + Ko (Cag — 1) + K3(C% — )2, (4.5)

where C' = FTF is the right Cauchy—Green strain and where 1, k1, k2, k3
are positive constants. It can then be checked that

$(F)>0  for all F € R?*?
and
¢(F)=0 ifand only if F € SO(2)U; USO(2)U, (4.6)
where
Uy=1—-nes®e; and Uso=T+ne2®e;
for e; € R? and ez € R? given by the canonical basis
e1 =(1,0) and ez = (0, 1).

The proof of LLemma 5 can be used to show that there exists a continuous
deformation with a linear interface with normal n separating two regions
with constant deformation gradients Fy € SO(2)U; and Fy € SO(2)U; if and
only if n = e; or n = ez. It can be checked that the energy density (4.5)
does not have a local minimum at deformations F' € SO(2) representing the
austenitic phase. This is a desired property for a two-dimensional model,
since otherwise, by Lemma 10, there would be rank-one connections between
stress-free deformation gradients representing the martensitic and austenitic
phases.

To allow for interfaces with arbitrary orientation with respect to a fixed
mesh or coordinate system (see Section 4.3), we define for the rotation Re
SO(2) the energy density

H(F) = ¢(FR)  for all F € R**2, (4.7)
For this energy deunsity, it follows from (4.6) that
#(F) =0 if and only if F € SO(2)U; USO(2)U,
where
Uy=I-né620é and Us=I+n62Qé
for
= ﬁel and é9 = Reg.

It follows by the above that there exists a continuous deformation with a linear
interface with normal A separating two regions with constant deformation

gradients Fy € SO(2)U; and F; € SO(2)U, if and only if A = é = Re; or
L = éa = Res.
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We now give computational results for the approximations to the energy-
minimizing microstructure for the energy

/Q $(Vy(z)) dz (4.8)

for the reference configuration Q = (0, 1) x (0, 1) where the deformation y(z)
is constrained on the boundary by

y(z) = [%Ul + %Ug] z, T € 0f. (4.9)

All of the results in Section 6 hold for the two-dimensional problem (4.7)-
(4.9), so we can conclude that the gradients of energy-minimizing sequences
of deformations to the two-dimensional problem (4.7)-(4.9) computed using
the continuous, piecewise linear finite element approximation on a uniform
mesh converge to the Young measure

1 1
Uy = 5501 + 5502.

In Fig. 3, we present Collins’ numerical results for the approximation of
an energy-minimizing microstructure to the problem (4.7)—(4.9) with R =
R(45°) (where R(#) denotes the rotation matrix of # degrees) by the piecewise
linear finite element approximation on a uniform mesh of size h = 1/N where
N = 16, 32, 64. Thus, we have that the lines that can separate regions with
constant deformation gradients Ul and Ug have normal

. . 1
n:€1:7§(61+62),
and are parallel to lines along which the gradients of deformations in the finite
element space are allowed to be discontinuous.
The optimization problem was solved by the Polak—Ribiere conjugate gradi-
ent method (Polak 1971, Glowinski 1984) with initial data

1. 1. 1
Yinit(T) = [§U1 + §U2} x+ §nhr(x) for all z € Q, (4.10)

where h is the mesh size and where r(z) = (r1(z), ro(x)) was obtained by get-
ting values for r;(x) on the interior vertices from a random number generator
for the interval (—1, 1) and then extending r;(x) to all of Q by interpolation.
We note that ||V [phr(z)] || = O (1), so the deformation gradients of the initial
state need not be close to the energy wells.

To visualize the results of the computations of microstructure, we use the
function 9 defined by (4.4) with Fy = U; and F} = U, and enhanced by the

continuous function

g9(s) = {

(26)2 for 0 < ¢ < 3,
~3(2(1-¢))? for3<c<1l

ol 1120
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Fig. 3. Deformation gradients for the problem (4.7)—(4.9) with n = .1 and
R= R(45°) computed by continuous, piecewise linear finite elements for a uniform
finite element mesh of size h = 1/N with N = 16, 32, 64. The finite element mesh

for N = 32 is shown. Courtesy of C. Collins.

We display a map from g{¥)( F))) into a grev scale so that elements are coloured

white if g(¢(F)) = 0 (corresponding to F' = U;) and elements are coloured

black if g(¢¥(F)) = 1 (corresponding to F = Us).

We see in Fig. 3 that microstructure has been obtained on the scale of each
successively refined mesh. Since the computed microstructure shown in Fig. 3
is not completely regular, a local minimum of the finite element optimization
problem has been computed and not a global minimum. However, the energy
of the computed local minimum is close enough to that of a global minimum to
give the microstructure and the macroscopic properties of a global mininuum.
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Fig. 4. Deformation gradients for the problem (4.7)-(4.9) with = .5 and the
mesh N = 64 for the orientation defined by R = R(6) with
6 = 25°, 0°, —25°, —45°. Courtesy of C. Collins.

The results in Fig. 4 illustrate the effect of mesh orientation with respect to
the lines of discontinuity of the deformation gradient. We see that the layers
are several mesh widths thick when they are not oriented with respect to the
mesh.

4.6. Nonconforming finite elements

An alternative approach is that given by the use of non-conforming finite
elements (Ciarlet 1978, Quarteroni and Valli 1994), that is, A, ¢ A. The
use of non-conforming finite elements is intuitively appealing for problems
with microstructure because the admissible finite element deformations should
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then have more flexibility to approximate oscillatory deformation gradients.
Collins (1994) has reported the results of numerical experiments for a two-
dimensional model for the Crouzeix—Raviart piecewise linear, triangular ele-
ment which is constrained to be continuous at the midpoints of line segments
which are edges of adjacent triangles (Ciarlet 1978).

In Klouc¢ek and Luskin (1994a), microstructure was approximated for a
dynamics problem by deformations constrained to be in the polynomial space

P x P x P, where
P = Span { 1,21, T2, x3, (22 — z3), (x? — 23) }
when restricted to the subdomains
Qe = ((¢ — 1)h1,ih1) X ((7 — Dh2, jha) x ((k — 1)h3, kh3), 4,5,k € Z,

where hj, ha, hs are the mesh lengths, and the deformations are constrained to
be continuous at the centres of gravity of the faces of §2;;5. These approximate
deformations are not generally continuous across the faces of ;5. This non-
conforming element has been analysed for Stokes’ equation by Rannacher
and Turek (1992) and for general second-order linear elliptic problems by
Klouéek, Li and Luskin (1996).

5. Approximation of microstructure

In this section, we present estimates for the approximation of microstructure
following Luskin (19964, 1996b) (for transformations with a double well en-
ergy density, such as the orthorhombic to monoclinic transformation) and Li
and Luskin (1996) (for the cubic to tetragonal transformation) for the problem

inf E(v), (5.1)
veWZf)\

where we recall that
WI‘?A = {ve W v(z) = Fz forxeaﬂ}

for F = (1 — A)Fy + AF; and where Fy € U and F| € U satisfy the rank-one
condition that there exist a € R3 and n € R3, |n| = 1, such that

FE=F+a®n. (5.2)

We will assume in this section that 8 < 1 and that the energy density ¢(F,8)
is minimized either on two rotationally invariant energy wells (such as given
by the orthorhombic to monoclinic transformation (2.13)) or on the three
rotationally invariant wells of the cubic to tetragonal transformation (2.15).
The proofs of the main results in this section are given in Luskin (1996a) and
Li and Luskin (1996).

We recall that if the energy density ¢(F, ) is minimized on two rotationally
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invariant wells (the double well case), then
{RURT : Ric G} = {U1, U}, (5.3)
so the energy density ¢(F,6) has minima at F' € Y for
U=U UlU;
where the energy wells are given by
Uy =SO(3)U; and Uy =SO(3)Us.

If the energy density ¢(F,6) is minimized on the three rotationally invariant
wells of the cubic to tetragonal transformation, then

{RUIR] : Rie G} = {U1, U, Us}
where

Up=wnl+ vy —1)e; Qey, Us =11l + (1g — v1)ex ® eq,
Us=uvl+ (r2—vi)e3®e3 (5.4)
for 0 < vy, 0 < vy, and vy # o, so the minima of the energy density are
F el for
U=UUU UUs

where the energy wells are given by
Uy =SO3)U1, Uy =SO(3)Uz, and Uz = SO(3)Us.

All of the results given in Sections 5 and 6 on error estimates for the finite
element approximation apply to both the double well problem (5.3) and to
the cubic to tetragonal problem (5.4).

Since Fy € U and F; € U satisfy the rank-one condition (5.2), it follows
from Lemma 3, Lemma 5, and Lemma 6 that we may assume without loss of
generality for both the double well problem (5.3) and the cubic to tetragonal
problem (5.4) that

el and el
We will also assume in this section without loss of generality that
Dmin(0) =0 (5.5)

(by replacing ¢(F,8) by ¢(F,6) — ¢min(6)). Also, in what follows we shall not
explicity denote the dependence of ¢, £, and U; on the temperature 6.

The results in this section give a bound for v € WI‘?A in terms of £(v) =
Jo #(Vu(z) 0) dz. Since we proved in Theorem 1 that

inf &£(v) =0,
vEW}’)\
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all of the results in this section give related results for the convergence of
energy-minimizing sequences. In Section 6 we will give an estimate for
inf  &(vy),
th.Ah,F)‘ ( h)
where Ay , is a conforming finite element approximation to Wg, which is
then used to give estimates for the finite element approximation of micro-
structure.
We shall also assume that ¢ grows quadratically away from the energy
wells, that is, we shall assume that there exists k > 0 such that

H(F) > k|F —7m(F)|)?  for all F € R¥*3 (5.6)
where 7 : R3*3 — U is a Borel measurable projection defined by

— 7(F)|| = mi ~U.
|F == (F)] rUnElgllF Ul

The projection 7 exists since U is compact, although the projection is not
uniquely defined at F' € R3*3 where the minimum above is attained at more
than one U € U. We also define the Borel measurable projection 71 2 : R3*3
Uy Uls by
F - || = i F-U]|. 57
IF = ma(F)l = min |1F= U] 6.)
We note that 7 = 7 2 in the double well case (5.3), but that = # 7 2 in the
cubic to tetragonal case (5.4) since U # Uy Uly. We shall also find it useful to
utilize the operators R(F) : R3*3 — SO(3) and II : R3*3 — {Fp, F}}, which
are defined by the relation

m12(F) = Ry o F)II1 o(F)  for all F € R3*3, (5.8)

The following theorem demonstrates that the directional derivatives or-
thogonal to n (where F; = Fy + a ® n) of sequences of energy-minimizing
deformations converge strongly in L?. It is crucial to the proof of all of the
other results.

Theorem 3 If w € R? satisfies w - n = 0, then there exists a positive
constant C such that

/Q (Vo(z) — Fywl?dz < CE@)Y/? + CE(w)  forallve WE.  (59)

Proof. See Luskin (19964q) for the case of two rotationally invariant energy
wells (5.3) and Li and Luskin (1996) for the case of three rotationally invariant
energy wells given by the cubic to tetragonal transformation (5.4). O

It follows from the convergence of the directional derivatives orthogonal to
n of energy-minimizing sequences of deformations and the Poincaré inequality
(Wloka 1987) that energy-minimizing sequences of deformations converge in

L2
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Corollary 1 There exists a positive constant C such that
/ (z) — Fa2de < CEW)Y2+ CE(w)  forallve WE.  (5.10)
Q

For the double well case (5.3), it follows trivially from the quadratic growth
of the energy density away from the energy wells (5.6) that the deformation
gradients of energy-minimizing sequences converge to the union of the energy
wells U = Uy UUs. However, for the cubic to tetragonal case (5.4) the proof
of this result relies on the bound for the directional derivatives orthogonal to
n given by Theorem 3. We state this result in the following Theorem.

Theorem 4 For the double well case (5.3) we have the estimate
/Q IVo(z) — m1a(Vo(@)|? do < s71E@w)  for all v € WE,.

For the cubic to tetragonal transformation (5.4), there exists a positive con-
stant C such that

/Q IVo(z) — m2(Vo(z))|? dz < CEY?(v) + CE(W) for all v € Wg.

Proof. The proof for the double well case (5.3) follows trivially from the
quadratic growth of the energy density away from the energy wells (5.6). See
Li and Luskin (1996) for the proof in the cubic to tetragonal case (5.4). O

The next theorem shows that the gradients of energy-minimizing sequences
of deformations converge weakly to F). It is a consequence of the convergence
of the deformations in L?.

Theorem 5 If w C 2 is a smooth domain, then there exists a positive
constant C such that

/ (Vo(z) — Fy) dz

Proof. The proof for the double well case (5.3) is given in Luskin (1996a),
and the proof for the cubic to tetragonal transformation (5.4) is given in Li
and Luskin (1996). O

< CEW)YB + CEW)Y? forallv e W,

The following theorem shows that the gradients of energy-minimizing se-
quences converge to the set {Fp, F1}. The proof relies on the bound for the
directional derivatives orthogonal to n given in Theorem 3.

Theorem 6 We have the estimate
/Q IVo(z) = Ty o(Vo(e))|2 do < CEw)/2 + CE(w)  for all v € WE,.

Proof. See Luskin (1996a) for the case of two rotationally invariant energy
wells (5.3) and Li and Luskin (1996) for the case of three rotationally invariant
energy wells given by the cubic to tetragonal transformation (5.4). O
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The next theorem states that in any smooth domain w C Q and for any
energy-minimizing sequence the volume fraction that Vv(z) is near Fy con-
verges to 1 — A and the volume fraction that Vu(z) is near Fj converges to
A. This result follows from the weak convergence of the deformation gradi-
ents (see Theorem 5) and the convergence of the deformation gradients to the
set {Fp, F1} (see Theorem 6). We recall from Theorem 2 that the result of
the following theorem implies that there does not exist an energy-minimizing
deformation y € WF to the problem (5.1).

To make the result of the following theorem precise, we define for any
smooth domain w C 2, p > 0, and v € W¢/\, the sets

w) =w(v) = {z € w: 1 2(Vu(z)) = Fy and [|Fy — Vo(z)|| < p},
1

wh =wy(v) ={z €w: M (Vu(z)) = Fi and ||F} — Vu(z)] < p} .

We can then use Theorem 5 and Theorem 6 to prove the following theorem
which describes the convergence of the microstructure (or Young measure) of
the deformation gradients of energy minimizing sequences.

Theorem 7 For any smooth domain w C 2 and any p > 0 we have that

Ieas <) _ (13| < CEW)VE + CEW)1, (5.11)
meas w, () /\‘ < CEW)YB + CE(v) /2 (5.12)

for all v € Wg. The constants C' in the estimates (5.11) and (5.12) are
independent of v € W¢A, but they depend on w and p.

Proof. The proof for the double well case (5.3) is given in Luskin (1996a),
and the proof for the cubic to tetragonal transformation (5.4) is given in Li
and Luskin (1996). O

We have by the compactness of SO(3)U; and SO(3)Uz that there exists a
positive constant pg such that

dist (SO(3)U1, SO(3)U2) =po>0 (5.13)
where
dist (SO(3)U1, SO(3)Uz) = min {||Vi — Va| : Vi € SO(3)U1, Va € SO(3)Uz)}.

By the definition of 71,2 (see (5.7)) and the definition of IT; o (see (5.8)), we
have for 0 < p < pp/2 that

|F; — F|| < p  implies that L1 2(F) = F;
for all FF € R®*3 and i € {0, 1}. Thus, for any 0 < p < po/2, any smooth
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domain w C Q, any v € W?, and any i € {0, 1} we have that

wf)(v) ={zew:Vu(z) € B,(F)},

where the set B,(F) for p > 0 and F € R3*3 is defined by
B,(F) = {G ERYI.||G - F| < p} .

Hence, it follows from the definition of the probability measure pg g wvy(T)
given by (3.53) that we have forz € 2, R > 0, v € W%, and 0 < p < pp/2
that

meas wy,(v)

Ba,R Vv (Bo(F3)) = (5.14)

meas w
for w = Bg(z).

The following corollary is a direct consequence of Theorem 7 and the iden-
tity (5.14) and implies the result on the uniqueness of the Young measure for
energy-minimizing sequences of the problem (5.1) that was given by Ball and
James (1992).

Corollary 2 Ifz € 2, R > 0, and p < pp/2, where pg is given by (5.13),
then there exists a positive constant C' such that

ke, r v (Bo(F)) — (1 — )| < CE()VE + CE(v)/2,
|tte, R, (Bp(F1)) — Al < CE(v)1/8 + CE(v)1/?
for all v € WI?A.

Next, we show that the estimates for the weak convergence of the deforma-
tion gradients (see Theorem 5) and the convergence of the deformation gradi-
ents to the set {Fy, F1} (see Theorem 6) can be used to give estimates for
the nonlinear integrals of Vv(z) that approximate macroscopic densities.

For linear transformations £ : R3%3 — R we define the operator norm

|£] = max |L(F)|
i ’
and for uniformly Lipschitz functions g(F) : R3*3 — R we define the function
norm

99 99

oF o7 )

We will give estimates of nonlinear integrals of Vu(x) for the Sobolev space
V of measurable functions f(z, F) : @ x R3*3 — R such that

bl

Lo = €S8 SUPp _p3x3

5 (%) o IVG(z) - n|* + G(x)2] dz < co

where

G(.’L’) = f(l'vFl) - f($,F0)
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We note that if f(z, F') € V, then f(z, F') is Lipschitz continuous as a function
of F € R3*3 for almost all z € Q.

Theorem 8 We have for all v € WZ%\ and all functions f(x, F) € V that

<

‘ | £ @ V0@) = [0 = N f (@, o) + A (o, F1)] da

1/2
¢ {/Q ”g—lé(aj’ ) ioo+ VG(z) - 7112 + G(m)2 dac} (5(1})1/4 + 5(0)1/2>

where

G(l‘) = f(x7F1) - f(vaO)

Proof. See Luskin (1996a) for the case of two rotationally invariant energy
wells (5.3) and Li and Luskin (1996) for the case of three rotationally invariant
energy wells given by the cubic to tetragonal transformation (5.4). O

6. Numerical analysis of microstructure

We shall give in this section error estimates for the finite element approx-
imation of a laminated microstructure for rotationally invariant, double well
energy densities (Luskin 1996a, 1996b) and for energy densities for the cubic
to tetragonal transformation (Li and Luskin 1996). These error estimates fol-
low directly from the approximation theory given in Section 5 and the theorem
proved in this section for the infimum of the energy
inf £ Vh

vp EAR, Py, ( )
where Ay, , is a conforming finite element space. We shall assume that all
of the assumptions described in Section 5 hold.

6.1. Properties of the conforming finite element approrimation

We now define the properties of conforming finite element spaces required for
our analysis of microstructure in Section 6. We assume that 7 for 0 < h < hg
is a family of decompositions of 2 into polyhedra { K} such that (Quarteroni
and Valli 1994):

1 Q= Uker, K;
interior K Ninterior Ko = () if K7 # K3 for Ky, Ka € 7p;

3 ifS=KnNKy#0for K # Ky, Ky, Ko € 73, then S is a common
face, edge, or vertex of Ky and Ky;

4 diam K < h for all K € 7.

The admissible deformations have finite energy and are constrained on the
part of the boundary where the deformation of the crystal is given. Hence, we
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have by (2.4) that our family of conforming finite element spaces, Ay, defined
for mesh diameters in the range 0 < h < hyg, satisfies

A, C AC W c WHP(Q;R?) c C(Q;R?)

for 0 < h < hy.
We assume that there exists an interpolation operator 7, : W1’°°(Q; R3) —
Ap, such that

esssup,eq || VZao(z)|| < Cess supeql|Vo(z)|] (6.1)

for all v € W1*(Q; R3), where the constant C in (6.1) and below will always
denote a generic positive constant independent of h. We also assume for v €

WL(; R3) that
Iyv(z)|k = v(z)|k for any K € 73, such that v(z)|k € {Pl(K)}3 (6.2)

where {Pl(K)}3 = PY(K) x PY(K) x PY(K) and P}(K) denotes the space
of linear polynomials defined on K.

We denote the finite element space of admissible functions satisfying the
boundary condition

vp(z) = Fx for all x € 09
for F € R3*3 by
AnF :AhﬂWl‘ff: {vn € Ap, : vp(z) = Fz for xz € 8Q}

and we further assume that the interpolation operator I} satisfies the property
that

T e Anr if  veWp (6.3)

The most widely used conforming finite element methods based on continu-
ous, piecewise polynomial spaces have interpolation operators Zj satisfying
(6.1) (for quasi-regular meshes), (6.2), and (6.3) (see Ciarlet 1978, Quarter-
oni and Valli 1994). In particular, (6.1)—(6.3) are valid for trilinear elements
defined on rectangular parallelepipeds as well as for linear elements defined
on tetrahedra.

6.2. Approximation of the infimum of the energy

Our analysis of the approximation of microstructure begins with an estim-
ate on the minimization of the energy over deformations v, € A that are
constrained to satisfy the boundary condition

vp(z) = [(1 = NFo+ ARlz = Faxx  for all z € 0Q (6.4)
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for Fy € U and F; € U rank-one connected as in (3.3) and 6 < 67. We recall
by (2.18) and (5.5) that

Pmin(0) = ¢(Fo,0) = ¢(F1,0) =0 (6.5)

if Fy, F1 € U and 8 < 6. The following estimate is an extension of similar
results in Gremaud (1994), Chipot et al. (1995) and Luskin (1996a). We note
that improved estimates for all of the results in this section can be obtained
for finite element meshes that are aligned with the microstructure.

Theorem 9 If Fy € U and F} € U are rank-one connected as in (3.3) and
0 < O, then

inf  E(vp) < ChY?  forall 0 < h < hg (6.6)

vhEAR,F,
Proof. By (6.3), we can define the deformation vy (z) € Ap F, by
VR(z) = Ip (Wy())

for y = h/? where 1, () € Wg is defined by (3.41) in Theorem 1. It follows
from property (6.2) of the interpolation operator Zj that

vp(z) = Wy(z) = wy(x) for all x € Qp, (6.7)
for (recalling that |n|=1)
Qn = O} \ An
where
02 = {x € 0 : dist(z, Q) > vhl/? + h} ,
AhZUjez{a:eszgz lz-n—jh?| <hor|z-n—(j+1-Nh/? gh}.

Now meas (2 \ Q2) < Ch!/2, since Q\ Q7 is a layer of width vh'/2 4 h
around the boundary of 2, and meas (Ap) < ChY/2 since A, is the union of
O(h~1/2) planar layers of thickness h. (Note that only @(h~1/2) of the sets
in the definition of Aj are non-empty.) So, since Q\ Q) = {2\ Q2} U Ay,
we have that

meas (2 \ Q) < Chl/?, (6.8)
and we have by (6.1), (3.38), and (6.7) that

Vup(z) € { Fo, F1} CU, for almost all z € Qp,
|Vup ()] < C, for almost all z € Q. (6.9)

Since ¢ is continuous, it is bounded on bounded sets in R3*3. Thus, it
follows from (6.5), (6.8) and (6.9) that

/Q¢(Vvh(:1:)) — /Q\Qh 6 (Von(z)) dz < C'meas (Q\ Qn) < ChI/2.
O
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We have seen in Section 4.2 that we generally expect to compute local
minima of the problem
e r, £
rather than global minima. The local minima that we compute often represent
the energy-minimizing microstructure on a length scale 2h rather than h.
So, it is reasonable to give error estimates for finite element approximations
up, € Ay, F, satisfying the quasi-optimality condition
S(uh) <C inf &E(vp) (6.10)
vh€AR R,
for some constant C' > 1 independent of h. For instance, if we compute a
local minimum that oscillates on a scale of 2h, then it is reasonable from
Theorem 9 to take C' = v/2.

The following corollaries are direct consequences of the estimate given in
Theorem 9 and the bounds given in Section 5. We note that the results in
this section hold for both the case of a double well energy density (5.3) and
the case of an energy density for the cubic to tetragonal transformation (5.4).

We recall that these estimates hold for general finite element meshes sat-
isfying only the conditions given at the beginning of this section. Improved
estimates are possible for meshes which are aligned with the microstructure.

Corollary 3 If uy satisfies the quasi-optimality condition (6.10) and w C 2
is a smooth domain, then there exists a positive constant C such that

/ |(Vun(z) — Fy)w|?dz < ChY4,
Q

Corollary 4 If uy, satisfies the quasi-optimality condition (6.10), then there
exists a positive constant C' such that

/ lup(z) — Fhz|*dz < ChY/4,
Q

Corollary 5 If uy, satisfies the quasi-optimality condition (6.10) and w C
is a smooth domain, then there exists a positive constant C such that

/ (Vo(z) — Fy) de

< Ch1/16 forallv e Wg.

Corollary 6 If uy, satisfies the quasi-optimality condition (6.10) and w C Q
is a smooth domain, then there exists a positive constant C' such that

meas(w},(uh))

meas(w)

meas <w2(uh))

meas(w)

—(1-))| < Chs, — ) < Chs,
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Corollary 7 If uy, satisfies the quasi-optimality condition (6.10), then there
exists a positive constant C such that

/Q f (@ Vun(@)) = [(1 = N f(z, Fo) + M(z, Fy)] dz
9 1/2
+ |VG(z) - n|? + G(x)2:| dx} Rl/8

<ol ot

for all f(z, F) € V where
G(z) = f(z, F1) - f(z, Fo)-

7. Relaxation

We have seen that the deformation gradients of energy-minimizing sequences
of the non-convex energy £(y) develop oscillations that allow the energy to
converge to the lowest possible value. The minimum energy attainable by a
microstructure that is constrained by the boundary condition y(z) = Fz for
x € Ow, where w C R3 is a bounded domain, is given by the relaxed energy
density Q@(F'), which can be defined by

Qo(P) = int { —— [ 4(Vo(@)de
v € WL (w;R®) and v(x) = Fz for z € aw} . (7.1)

The definition of Q@(F') can be shown to be independent of w (Dacorogna
1989).

An energy density ¥(F) is defined to be quasi-convez if QY(F) = ¢ (F') for
all F € R¥3, It can be shown that Q¢(F) is quasi-convex and that Q¢(F)
is the quasi-convex envelope of ¢(F’) since

Q¢ = sup{ ¢ < ¢ : ¢ quasi-convex} .

We note that in general the relaxed energy density @u(F') is not convex
(Kohn 1991).

To make the following discussion simple, we will assume that the energy
density satisfies the growth condition that for positive constants Cyp, C1, Ca, Cs
and p > 3 we have

Ci||F||P — Co < ¢(F,0) < Co||F|IP +C3  for all F € R3S, (7.2)
Hence, we have that
We = WwhP(Q;R?).
We shall also assume that the admissible deformations belong to the set

A={yeW? y(z) = yo(x) for z € 00}
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for yo(z) € W*.
It can then be shown under appropriate conditions on the energy density

6(F) that
int, [ Qo(Vy(@)de = inf, [ 6(Vy(e)) do (7.3)

and that there exists an energy-minimizing deformation g(z) € A for the
relaxed energy density Q¢(F') such that

| @4(Vy(a)) de = int, [ Q8(Ty(a))dz. (74)

Further, it can be shown that there exists an energy-minimizing sequence
{yr} C A for the energy density ¢ such that

lim [ $(Vu(@)) do = [ Qé(Vy(a) da

and that
yk(z) — g(z) weakly in WHP(Q; R3)

as k — oo (Dacorogna 1989).

It is natural to consider the computation of the numerical solution of (7.4)
for the deformation §(z), that is, the macroscopic deformation for the energy-
minimizing microstructure defined by the sequence {y,}. We can also con-
sider the computation of a microstructure at each Z € §2 by computing the
energy-minimizing microstructure for the problem (7.1), which defines the
relaxed energy density Q@(Vg(Z)). However, explicit formulae or effective
algorithms to compute the relaxed energy density (7.1) for the energy densit-
ies used to model martensitic crystals have not been found. (See Kohn 1991,
though, for an explicit solution to (7.1) for a double well energy density with
a special ‘Hooke’s law’.)

We can approximate (7.1) by considering as test functions the first-order
laminates v(x) = W () defined by (3.41) with boundary values W, (z) = Fx
for £ € Ow. To construct the class of all first-order laminates v(z) = wy(z)
with boundary values 1y (z) = Fz for z € Ow we consider all Fy, F; € R3%3
and all 0 < A <1 such that

F=(1-)F+ AR, (7.5)
where
Fi=F+a®n (7.6)
for a, n € R3, |n| = 1. We note that it follows from (7.5) and (7.6) that
FE=F~-X®n and FF=F+(1-Xa®n.

The volume fraction that ., (z) has deformation gradient Fy converges to
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1— X asy — 0, and the volume fraction that w.(x) has deformation gradient
F} converges to A as v — 0. Thus it follows from the proof of Theorem 1
that

limy—0 treass Ju #(Viy(2)) dz = (1 = N)$(Fp) + Ag(F1)
=(1-XNo(F—=xa®n)+Ap(F+(1-Aa®n).
If we optimize (7.1) by restricting v € W1 % (w; R3) to the first-order lam-

inates of the form . () discussed in the preceding paragraph, then we obtain
the energy density R;¢(F') defined by

R1¢(F) =
inf{(1 —AN)d(F —Aa®@n)+ Ap(F + (1 -ANa®n):
0<A<1,a,n€eR? |n=1}
for all F € R3¥3, We can more generally optimize (7.1) over the laminates

of order k discussed in Section 3.10 and obtain the energy density Rip¢(F),
which can be defined by Ro¢(F') = ¢(F') and inductively for k =1,... by

Ryo(F) =
inf{(1 — A\)Rk—1¢(F — Aa®n) + ARk_16(F + (1 = Na®n) :
0<A<1,a,n€R? |n|=1}

for all F € R3*3 (Kohn and Strang 1986).
It can be seen that

QO(F) < Rpp(F) < ... < Rip(F) < ¢(F)  for all F € R3*3,

so we can conclude from (7.3) that

int /Q Qé(Vy(x))dz = inf /Q Red(Vy(@)) do = inf, /Q $(Vy(z)) dz.
(7.7)
. R3x3

An energy density y(F) — R is rank-one convez if

Y((1 = M) Fo + AF1) < (1 = NY(Fo) + Mp(Fy)

for all 0 < A < 1 and all Fy, Fy € R3*3 such that rank (F} — Fy) < 1. The
rank-one convex envelope R¢(F') is then defined by

R¢ = sup{¢ < ¢ : ¢ rank-one convex } .
We note that Kohn and Strang (1986) have shown that
R§(F) = lim Ryg(F)  forall F e R3*3,
—00

and that Sverdk (1992) has shown that in general Q¢(F) # R$(F).
The approximation

inf /QR;CQS(Vy(a:))dx

YyEA,
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for finite element spaces A, C A has been considered in Nicolaides and Walk-
ington (1993), Roubicek (1994), Carstensen and Plechac (1995), Roubicek
(19964), Pedregal (1996), Pedregal (1995), Kruzik (1995).

An energy density ¥(F) : R3*3 — R is polyconvez if it is a convex function
of the minors of F € R3*3 (Ball 1977, Dacorogna 1989). The polyconvex
envelope P@(F) is then defined by

P¢p =sup{vy < ¢: ¢ polyconvex } .

Since a polyconvex energy density is always quasi-convex by Jensen’s in-
equality, we have that Po(F) < Q¢(F) for all F € R3*3, It can be shown
that in general P@(F') # Q@(F'). Representations of the polyconvex envelope
P¢(F), especially that due to Dacorogna (1989), have been used to develop
numerical approximations of the lower bound for the energy given by

inf, /Q P¢(Vy(z)) do

(Roubicek 19964, Pedregal 1996, Pedregal 1995, Kruzik 1995).
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